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LINK PREDICTION

• Do you know why Facebook “People you may know” is so 
frighteningly accurate?

• How youtube/Spotify/amazon recommend you the right item?

• =>Link prediction



LINK PREDICTION

• Observed network: current state

• Link prediction: What edge:
‣ Might appear in the future (future link prediction)
‣ Might have been missed (missing link prediction)



LINK PREDICTION

• Link prediction based on network properties:
‣ Local: High clustering (friends of my friends will become my friends)
‣ Global: Two unrelated hubs more likely to have links that unrelated small nodes
‣ Meso-scale organisation: two nodes in the same community…

• Link prediction can also be based on node properties
‣ Combining with usual machine learning, outside of the scope of this course



SIMILARITY INDICES
UNSUPERVISED



COMMON NEIGHBORS

• “Friends of my friends are my friends”

• High clustering in most networks

• =>The more friends in common, the highest probability to 
become friends



PREDICTION

• How to predict links based on Common Neighbors?

• For each pair of unconnected nodes, compute CN

• =>Ordered list of pairs from more probable to less probable

• 5 most probable for a node? Take top 5 among non-already 
neighbors



JACCARD COEFFICIENT 

• Used in many applications: 
‣ Measure of similarity of sets of different sizes

• Intuition:
‣ Two people who know only the same 3 people, but 1 not shared: 

- =>high probability
‣ Two people who know 1000 people, only 3 in commons

- =>Lower probability 



HUB PROMOTED

• Intuition:
‣ One person do “everything as” the other one
‣ One person know 1000 people and the other one 3 

- =>higher probability than 
‣ Two people who know 1000 people, only 3 in commons



ADAMIC ADAR

• Intuition:
‣ For previous scores: all common nodes are worth the same
‣ For AA: 

- A common node with ONLY them in common is worth the most
- A common node connected to everyone is worth the less
- The higher the size of its neighborhood, the lesser its value



RESSOURCE ALLOCATION

• Similar to Adamic Adam, penalize more higher degrees



MANY OTHER SCORES

Sorenson Index Salton Cosine Similarity

Hub Depressed Leicht-Holme-Nerman



PREFERENTIAL ATTACHMENT 
• Preferential attachment:

‣ Model of network growth based on the idea that the rich get richer
‣ Every time a node join the network, it creates a link with nodes with probability 

=current degree
‣ Generates power law distribution of degrees

- But, in my opinion (and others), very unrealistic networks

• Score not based on common neighbors

• Intuition: Two nodes with many neighbors more likely to have 
new ones than nodes with few neighbors



WHICH ONE IS BEST?
• Compute on many networks using AUC score (Explained 

later)

[Lu 2010]
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WHICH ONE IS BEST?

[Lu 2010]

• Compute on many networks using AUC score (Explained 
later)



WHICH ONE IS BEST?

• All scores but PA are based on common neighbors

• =>No links between nodes at graph distance >2

• Inconsistent with observations

• =>We should combine PA and others



SIMILARITY INDICES
SUPERVISED



SUPERVISED MACHINE 
LEARNING

• Use Machine Learning algorithms to learn to predict 
something

• Takes features as input, provides prediction as output

• Two phases:
‣ Training: show features + associated value
‣ Testing: Try to predict value from features



SUPERVISED MACHINE 
LEARNING



SUPERVISED MACHINE 
LEARNING

• Our features: similarity indices (CN, AA, PA, …)
‣ One or, obviously, several

• Our value to predict: Link or No link (2 classes)

• These types of ML algorithms are called classifiers
‣ Logistic Classifier
‣ Decision Tree Classifier
‣ Neural networks Classifier
‣ …



LOGISTIC CLASSIFICATION

• Very short introduction

• Value to predict: 
‣ 0 (no edge)
‣ 1 (edge)

• Linear relations between variables
‣ But constrained to [0-1] (unlike linear regression)



LOGISTIC CLASSIFICATION

• Very short introduction

• Value to predict: 
‣ 0 (no edge)
‣ 1 (edge)

• Linear relations between variables
‣ But constrained to [0-1] (unlike linear regression)

Probability that Y=1



DECISION TREES
• Split recursively data in 2 to maximize homogeneity



CREATING TRAINING SET

• Problem: we need a training set: examples of correct link 
prediction
‣ We have only a network with edges

• Solution: 
‣ 1)remove randomly edges
‣ 2)Consider the resulting network as “original state”
‣ 3)Consider the removed edges as edges to predict



CREATING TRAINING SET

Original 
network

Network 
“original state” 

Edges that 
“appeared”

Train classifier

Features Outcomes



CREATING TRAINING SET

• Example of possible outcomes with a decision tree:

• If CN <1
‣ IF PA>1000 => Predict 1
‣ ELSE => Predict 0

• ELSE
‣ IF PA > 10000 => Predict 1
‣ ELSE

- IF AA > 10 => Predict 1
- ELSE
- IF JC < 0.2 => Predict 0
- …



INTERPRETATION OF 
CLASSIFIER 

• Classifier predict outcomes given features

• Two ways to obtain outcome:
‣ Class => 0 or 1. 

- The classifier decides how many edges will appear
‣ Probability

- Distance to separating hyperplane
- The most “certain” is the decision, the highest value
- Same interpretation as scores such as CN or AA
- We “decide” how many edges we want (Top k …)

• Results: slight but robust improvement over indexes alone



EVALUATION

• How to evaluate the quality of link prediction?

• 1)Create a train and test set
‣ Artificially created or collected as a dynamic network

• 2)Use an appropriate evaluation measure
‣ AUROC (or AUC) (Area Under the Receiver Operating Curve)
‣ Average Precision
‣ MAP (Mean Average Precision)



EVALUATION

• Creating the test dataset
‣ Single network available:

- Remove edges randomly
- Removed edges are your test edges

‣ Dynamic network (edges appear at a given date)
- Choose a date to split data in 2
- The first part is the training set
- The second part is the test set
- =>More realistic 
- =>Usually harder
- =>Depends more on the chosen network



EVALUATION MEASURES

• Naive approach: Accuracy

• Simple, intuitive evaluation of a classifier :
‣ Given a test set with positive and negative items, how many items correctly 

classified?
‣ Problem: Our test set has only positive examples. We need to add negative 

examples (pairs of nodes without a new edge)
‣ =>Result depends completely on the ratio between positive and negative 

examples
- a balanced dataset is usually recommended, but useless for real applications
- A dataset respecting the density is not adapted: the trivial solution “always predict no edge” 

has a very high score and is very hard to beat



AVERAGE PRECISION

• Better solution: Average Precision

• Let’s define Precision and Recall:

• For a desired #of edges (top k)
‣ 1 Value of Precision
‣ 1 Value of Recall

• If we increase the number of desired edges:
‣ Precision tend to decrease (decisions on harder cases)
‣ Recall tend to increase (less missed edges) 
‣ => False negatives transformed in true positives or false negatives



AVERAGE PRECISION

Average precision: 
Area Under the Precision/Recall Curve



AVERAGE PRECISION

• Input:
‣ For each pair of node: score. 
‣ Rank by decreasing order. 
‣ Compute P/R for each value of desired edges

• Pros:
‣ No need to arbitrarily decide # desired edges !

• Cons: 
‣ Result still depends on the ratio of really positive edges in the test set
‣ =>Gives higher scores to solutions making less mistakes in the beginning



MEAN AVERAGE PRECISION

• MAP - Mean Average Precision: Variant of AP
‣ Compute AP for each node separately
‣ Take the average

• AP can be right for some types of nodes and not others

• MAP gives a different perspective

• Otherwise, same pros/cons



AUC - AUROC

• AUC: Area Under the Curve. Short (erroneous) name for 
AUROC (Area under the Receiver Operating Characteristic 
Curve)

• Similar idea than AP: Plot the relation between
‣ False positives
‣ True positives

• Take the area under the curve



AUC - AUROC

For each new TP,
How many FP added ?



AUC - AUROC

• Probabilistic interpretation:
‣ If we pick a random positive example and a random negative example, 

probability that the positive one has a higher score 

• Pros: 
‣ Mostly independent on the fraction of positive in the test set

• Cons:
‣ Very high values, (env. 0.98), small relative improvements
‣ Weigh equally all types of prediction (few links, many links) while, usually, we 

care more about predicting few edges



EVALUATION MEASURES

• Conclusion: Not one perfect measure, hard to say definitively 
that one method is the best without any doubt

• If not using AUC, favor a small fraction of positive cases, i.e. 
close to:
‣ #edges to add / #pairs of nodes without edges
‣ Note that this fraction is very low in large networks: e.g. 0.00001



OTHER METHODS: 
RANDOM WALKS



RANDOM WALKS

• Previous indices mostly depends on direct neighbors

• Idea: define a new index working at higher distance

• For a pair of nodes [u,v] at distance>1, compute the 
probability of reaching v from u after a random walk of 
distance k

• Problem: computationally costly. Wait for next class on graph 
embedding…



OTHER METHODS: 
COMMUNITY STRUCTURE



COMMUNITY STRUCTURE

• General idea:
‣ 1)Compute community structure on the whole graph
‣ 2)Assign high probability for 2 nodes in same community, low probability 

otherwise

• Results are not good enough alone
‣ Combine with indices using supervised learning
‣ Able to capture edges probability at distance >2



COMMUNITY STRUCTURE

• For InfoMap and Louvain:
‣ Assign a score to each pair proportional to the change in the quality function

• For instance, Louvain optimize Modularity.
‣ Each edge added between communities:

- Decrease in the Modularity
‣ Edge added inside community:

- Increase in Modularity, depends on properties of the community and nodes



COMMUNITY STRUCTURE

• For SBM

• Reminder: 
‣ SBM assign each node to a community
‣ For each pair of community, a probability of having an edge

• Probability of edge between pair :
‣ Density between their respective communities

• If a Degree-Corrected SBM:
‣ Probability also depends of degrees of nodes



GRAPH RECONSTRUCTION



GRAPH RECONSTRUCTION

• Use same indices, same methods, same evaluations as link 
prediction

• Difference
‣ We do not split network in train and test: the whole network is used for both
‣ It says how much the method captures the nature of the network organization



GRAPH RECONSTRUCTION

• Process (for instance, with AA index)
‣ Compute AA for all pairs of nodes 
‣ Yield the ordered list of edges by AA
‣ Evaluate by comparing with the original network, considering we want to 

predict as many edges as originally in the network

• Has several applications:
‣ Identify possible errors in the collected networks (missing or non existing 

edges)
‣ Generate variant of an observed network
‣ Evaluate how well fitting is a model
‣ …



GRAPH RECONSTRUCTION

• Interesting observation: Methods tend to be good either at 
graph reconstruction or at link prediction

• Classic problem of overfitting VS generalization in machine 
learning.

• If a method describes perfectly the current state, no need to 
correctly rank non-present edges. 
‣ The identity model has highest score at graph reconstruction, worst score at 

link prediction…



PRACTICALS
• (You’ll have to use sklearn)

• 1)On your favorite network, predict edges according to Common 
Neighbors, Adamic Adar and Preferential Attachment

• 2)Compare manually the results and comment

• 3)Compare the results using AUC and AP (sklearn)
‣ Need to remove 10% edges as test set, or use real dynamic network 

(Game of  Thrones for instance)

• 4)Do the same using a classifier (sklearn)
‣ Need to Remove 10% edges as training set

• 5)Advanced: Do the same using SBM


