4- LINK PREDICTION & GRAPH RECONSTRUCTION

LINK PREDICTION

- Do you know why Facebook "People you may know" is so frighteningly accurate?
- How youtube/Spotify/amazon recommend you the right item?
- =>Link prediction

LINK PREDICTION

- Observed network: current state
- Link prediction: What edge:
 - Might appear in the future (future link prediction)
 - Might have been missed (missing link prediction)

LINK PREDICTION

- · Link prediction based on network properties:
 - Local: High clustering (friends of my friends will become my friends)
 - Global: Two unrelated hubs more likely to have links that unrelated small nodes
 - Meso-scale organisation: two nodes in the same community...
- · Link prediction can also be based on node properties
 - Combining with usual machine learning, outside of the scope of this course

SIMILARITY INDICES UNSUPERVISED

COMMON NEIGHBORS

- "Friends of my friends are my friends"
- High clustering in most networks
- =>The more friends in common, the highest probability to become friends

$$CN(x,y) = |\Gamma(x) \cap \Gamma(y)|$$

PREDICTION

- How to predict links based on Common Neighbors?
- For each pair of unconnected nodes, compute CN
- =>Ordered list of pairs from more probable to less probable
- 5 most probable for a node? Take top 5 among non-already neighbors

JACCARD COEFFICIENT

- Used in many applications:
 - Measure of similarity of sets of different sizes

$$JC(x,y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}$$

- Intuition:
 - Two people who know only the same 3 people, but I not shared:
 - =>high probability
 - Two people who know 1000 people, only 3 in commons
 - =>Lower probability

HUB PROMOTED

• Intuition:

- One person do "everything as" the other one
- One person know 1000 people and the other one 3
 - =>higher probability than
- Two people who know 1000 people, only 3 in commons

$$HP(x,y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{min(|\Gamma(x)|, |\Gamma(y)|)}$$

ADAMIC ADAR

• Intuition:

- For previous scores: all common nodes are worth the same
- For AA:
 - A common node with ONLY them in common is worth the most
 - A common node connected to everyone is worth the less
 - The higher the size of its neighborhood, the lesser its value

$$\mathrm{AA}(x,y) = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}$$

RESSOURCE ALLOCATION

· Similar to Adamic Adam, penalize more higher degrees

$$RA(x,y) = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{|\Gamma(z)|}$$

MANY OTHER SCORES

Sorenson Index

$$SI(x,y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x)| + |\Gamma(y)|}$$

Hub Depressed

$$HD(x,y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{max(|\Gamma(x)|, |\Gamma(y)|)}$$

Salton Cosine Similarity

$$SC(x,y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{\sqrt{|\Gamma(x)| \cdot |\Gamma(y)|}}$$

Leicht-Holme-Nerman

$$LHN(x,y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x)| \cdot |\Gamma(y)|}$$

PREFERENTIAL ATTACHMENT

- Preferential attachment:
 - Model of network growth based on the idea that the rich get richer
 - Every time a node join the network, it creates a link with nodes with probability =current degree
 - Generates power law distribution of degrees
 - But, in my opinion (and others), very unrealistic networks
- Score not based on common neighbors
- Intuition: Two nodes with many neighbors more likely to have new ones than nodes with few neighbors

$$PA(x, y) = |\Gamma(x)| \cdot |\Gamma(y)|$$

Compute on many networks using AUC score (Explained)

later)

Indices	PPI	NS	Grid	РВ	INT	USAir
CN	0.889	0.933	0.590	0.925	0.559	0.937
Salton	0.869	0.911	0.585	0.874	0.552	0.898
Jaccard	0.888	0.933	0.590	0.882	0.559	0.901
Sørensen	0.888	0.933	0.590	0.881	0.559	0.902
HPI	0.868	0.911	0.585	0.852	0.552	0.857
HDI	0.888	0.933	0.590	0.877	0.559	0.895
LHN1	0.866	0.911	0.585	0.772	0.552	0.758
PA	0.828	0.623	0.446	0.907	0.464	0.886
AA	0.888	0.932	0.590	0.922	0.559	0.925
RA	0.890	0.933	0.590	0.931	0.559	0.955

[Lu 2010]

Compute on many networks using AUC score (Explained)

later)

Indices	PPI	NS	Grid	PB	INT	USAir
CN	0.889	0.933	0.590	0.925	0.559	0.937
Salton	0.869	0.911	0.585	0.874	0.552	0.898
Jaccard	0.888	0.933	0.590	0.882	0.559	0.901
Sørensen	0.888	0.933	0.590	0.881	0.559	0.902
HPI	0.868	0.911	0.585	0.852	0.552	0.857
HDI	0.888	0.933	0.590	0.877	0.559	0.895
LHN1	0.866	0.911	0.585	0.772	0.552	0.758
PA	0.828	0.623	0.446	0.907	0.464	0.886
AA	0.888	0.932	0.590	0.922	0.559	0.925
RA	0.890	0.933	0.590	0.931	0.559	0.955

[Lu 2010]

Compute on many networks using AUC score (Explained)

later)

						-
Indices	PPI	NS	Grid	РВ	INT	USAir
CN	0.889	0.933	0.590	0.925	0.559	0.937
Salton	0.869	0.911	0.585	0.874	0.552	0.898
Jaccard	0.888	0.933	0.590	0.882	0.559	0.901
Sørensen	0.888	0.933	0.590	0.881	0.559	0.902
HPI	0.868	0.911	0.585	0.852	0.552	0.857
HDI	0.888	0.933	0.590	0.877	0.559	0.895
LHN1	0.866	0.911	0.585	0.772	0.552	0.758
PA	0.828	0.623	0.446	0.907	0.464	0.886
AA	0.888	0.932	0.590	0.922	0.559	0.925
RA	0.890	0.933	0.590	0.931	0.559	0.955

[Lu 2010]

- · All scores but PA are based on common neighbors
- =>No links between nodes at graph distance >2
- Inconsistent with observations
- =>We should combine PA and others

SIMILARITY INDICES SUPERVISED

SUPERVISED MACHINE LEARNING

- Use Machine Learning algorithms to learn to predict something
- · Takes features as input, provides prediction as output
- Two phases:
 - Training: show features + associated value
 - Testing: Try to predict value from features

SUPERVISED MACHINE LEARNING

SUPERVISED MACHINE LEARNING

- Our features: similarity indices (CN, AA, PA, ...)
 - One or, obviously, several
- Our value to predict: Link or No link (2 classes)
- These types of ML algorithms are called classifiers
 - Logistic Classifier
 - Decision Tree Classifier
 - Neural networks Classifier

· ...

LOGISTIC CLASSIFICATION

- Very short introduction
- Value to predict:
 - 0 (no edge)
 - I (edge)

- Linear relations between variables
 - But constrained to [0-1] (unlike linear regression)

$$Ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$

LOGISTIC CLASSIFICATION

- Very short introduction
- Value to predict:
 - 0 (no edge)
 - I (edge)

- Linear relations between variables
 - But constrained to [0-1] (unlike linear regression)

Probability that Y=I
$$Ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$

DECISIONTREES

Split recursively data in 2 to maximize homogeneity

CREATING TRAINING SET

- Problem: we need a training set: examples of correct link prediction
 - We have only a network with edges

• Solution:

- I)remove randomly edges
- > 2) Consider the resulting network as "original state"
- ▶ 3) Consider the removed edges as edges to predict

CREATING TRAINING SET

CREATING TRAINING SET

- Example of possible outcomes with a decision tree:
- If CN < |
 - ▶ IF PA>1000 => Predict |
 - ▶ ELSE => Predict 0
- ELSE
 - ▶ IF PA > 10000 => Predict |
 - ELSE
 - IF AA > IO => Predict I
 - FLSF
 - IF JC < 0.2 => Predict 0
 - ...

INTERPRETATION OF CLASSIFIER

- Classifier predict outcomes given features
- Two ways to obtain outcome:
 - \rightarrow Class => 0 or 1.
 - The classifier decides how many edges will appear
 - Probability
 - Distance to separating hyperplane
 - The most "certain" is the decision, the highest value
 - Same interpretation as scores such as CN or AA
 - We "decide" how many edges we want (Top k ...)
- · Results: slight but robust improvement over indexes alone

EVALUATION

- How to evaluate the quality of link prediction?
- I) Create a train and test set
 - Artificially created or collected as a dynamic network
- 2) Use an appropriate evaluation measure
 - AUROC (or AUC) (Area Under the Receiver Operating Curve)
 - Average Precision
 - MAP (Mean Average Precision)

EVALUATION

- Creating the test dataset
 - Single network available:
 - Remove edges randomly
 - Removed edges are your test edges
 - Dynamic network (edges appear at a given date)
 - Choose a date to split data in 2
 - The first part is the training set
 - The second part is the test set
 - =>More realistic
 - =>Usually harder
 - =>Depends more on the chosen network

EVALUATION MEASURES

- Naive approach: Accuracy
- Simple, intuitive evaluation of a classifier:
 - Given a test set with positive and negative items, how many items correctly classified?
 - Problem: Our test set has only positive examples. We need to add negative examples (pairs of nodes without a new edge)
 - >=>Result depends completely on the ratio between positive and negative examples
 - a balanced dataset is usually recommended, but useless for real applications
 - A dataset respecting the density is not adapted: the trivial solution "always predict no edge" has a very high score and is very hard to beat

AVERAGE PRECISION

- Better solution: Average Precision
- Let's define Precision and Recall:
- For a desired #of edges (top k)
 - I Value of Precision
 - ▶ I Value of Recall
- If we increase the number of desired edges:
 - Precision tend to decrease (decisions on harder cases)
 - Recall tend to increase (less missed edges)
 - > => False negatives transformed in true positives or false negatives

$$ext{Precision} = rac{tp}{tp+fp}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

AVERAGE PRECISION

Average precision:

Area Under the Precision/Recall Curve

AVERAGE PRECISION

• Input:

- For each pair of node: score.
- Rank by decreasing order.
- Compute P/R for each value of desired edges

• Pros:

No need to arbitrarily decide # desired edges!

• Cons:

- Result still depends on the ratio of really positive edges in the test set
- > => Gives higher scores to solutions making less mistakes in the beginning

MEAN AVERAGE PRECISION

- MAP Mean Average Precision: Variant of AP
 - Compute AP for each node separately
 - Take the average
- AP can be right for some types of nodes and not others
- MAP gives a different perspective
- Otherwise, same pros/cons

AUC - AUROC

- AUC: Area Under the Curve. Short (erroneous) name for AUROC (Area under the Receiver Operating Characteristic Curve)
- Similar idea than AP: Plot the relation between
 - False positives
 - True positives
- Take the area under the curve

AUC - AUROC

For each new TP, How many FP added?

AUC - AUROC

Probabilistic interpretation:

If we pick a random positive example and a random negative example, probability that the positive one has a higher score

• Pros:

Mostly independent on the fraction of positive in the test set

• Cons:

- Very high values, (env. 0.98), small relative improvements
- Weigh equally all types of prediction (few links, many links) while, usually, we care more about predicting few edges

EVALUATION MEASURES

- Conclusion: Not one perfect measure, hard to say definitively that one method is the best without any doubt
- If not using AUC, favor a *small* fraction of positive cases, i.e. close to:
 - #edges to add / #pairs of nodes without edges
 - Note that this fraction is very low in large networks: e.g. 0.0000 l

OTHER METHODS: RANDOM WALKS

RANDOMWALKS

- Previous indices mostly depends on direct neighbors
- · Idea: define a new index working at higher distance
- For a pair of nodes [u,v] at distance>I, compute the probability of reaching v from u after a random walk of distance k
- Problem: computationally costly. Wait for next class on graph embedding...

OTHER METHODS: COMMUNITY STRUCTURE

COMMUNITY STRUCTURE

• General idea:

- I)Compute community structure on the whole graph
- 2) Assign high probability for 2 nodes in same community, low probability otherwise
- · Results are not good enough alone
 - Combine with indices using supervised learning
 - ► Able to capture edges probability at distance >2

COMMUNITY STRUCTURE

- For InfoMap and Louvain:
 - Assign a score to each pair proportional to the change in the quality function
- For instance, Louvain optimize Modularity.
 - Each edge added between communities:
 - Decrease in the Modularity
 - Edge added inside community:
 - Increase in Modularity, depends on properties of the community and nodes

COMMUNITY STRUCTURE

- For SBM
- · Reminder:
 - SBM assign each node to a community
 - For each pair of community, a probability of having an edge
- Probability of edge between pair:
 - Density between their respective communities
- If a Degree-Corrected SBM:
 - Probability also depends of degrees of nodes

• Use same indices, same methods, same evaluations as link prediction

Difference

- We do not split network in train and test: the whole network is used for both
- It says how much the method captures the nature of the network organization

- Process (for instance, with AA index)
 - Compute AA for all pairs of nodes
 - Yield the ordered list of edges by AA
 - Evaluate by comparing with the original network, considering we want to predict as many edges as originally in the network
- Has several applications:
 - Identify possible errors in the collected networks (missing or non existing edges)
 - Generate variant of an observed network
 - Evaluate how well fitting is a model

)

- Interesting observation: Methods tend to be good **either** at graph reconstruction **or** at link prediction
- Classic problem of overfitting VS generalization in machine learning.
- If a method describes perfectly the current state, no need to correctly rank non-present edges.
 - The identity model has highest score at graph reconstruction, worst score at link prediction...

PRACTICALS

- (You'll have to use sklearn)
- 1)On your favorite network, predict edges according to Common Neighbors, Adamic Adar and Preferential Attachment
- 2) Compare manually the results and comment
- 3) Compare the results using AUC and AP (sklearn)
 - Need to remove 10% edges as test set, or use real dynamic network (Game of Thrones for instance)
- 4)Do the same using a classifier (sklearn)
 - Need to Remove 10% edges as training set
- 5) Advanced: Do the same using SBM