NETWORK EMBEDDING



NAMES

» Graph embedding / Network embedding

* Representation learning on networks

» Wikipedia: Representation learning = feature learning, as opposed
to manual feature engineering

* Embedding => Latent space



IN CONCRETE TERMS

* A graph Is composed of

» Nodes (possibly with labels)
» Edges (possibly directed, weighted, with labels)

* A graph embedding technigue in d dimension will assign a
vector of length d to each node, that will be useful for *what
we want to do with the graph™.

» A vector can be assigned to an edge (u,v) by combining
vectors of u and v



WHATI 10O DO WITH
EMBEDDINGS!

* [wo possible ways to use an embedding:
» Supervised learning:

- Algorithm learn to predict *something™ from the features in the embedding
» Unsupervised learning:

- The distance between vectors in the embedding is used for *something*



Al CANWE DO VI
EMBEDDINGS ¢



EMBEDDING TASKS

» Common tasks:

» Link prediction (supervised)
Graph reconstruction (unsupervised link prediction ? / ad hoc)
Community detection (unsupervised)
Node classification (supervised community detection ?)
Visualisation (distances, like unsupervised)
Role definrtion (unsupervised, some special embeddings)
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OVERVIEW OF MOST
POPULAR METHCE



. RANDOM WALK BASED



DEEPWALK

* The first “'modern” graph embedding method

 Adaptation of word2vec/skipgram to graphs



SKIPGRAM

VWord embedding
Natural language => vectors

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The

brown |[fox|Jjumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. == (brown, the)
(brown, quick)

(brown, fox)
(brown, jumps)

The|quick brown.jumps over|the lazy dog. = (fox, quick)
(fox, brown)

(fox, jumps)

(fox, over)

[http://mccormickml.com/2016/04/ | 9/word2vec-tutorial-the-skip-gram-model/]



SKIPGRAM

Output Layer

Softmax Classifier
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Linear Neurons
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GENERIC “SKIPGRAM"

» Algorithm that takes an input:

» The element to embed
» A list of “‘context’” elements

* Provide as output:

» An embedding with nice properties
- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure



GENERIC “SKIPGRAM"
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|https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/|



https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

GENERIC “SKIPGRAM"

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

|https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/|


https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

DEEPWALK

» Skipgram for graphs:

» | )Generate “sentences’” using random walks
» 2)Apply Skipgram

» Parameters: dimensions d, RWV length k



NODEZ2VEC

» Use biased random walk to tune the context to capture what

we want

» "“Breadth first” like RW => |ocal neighborhood (edge probability ?)
» "Depth-first” like RW => global structure ! (Communities ?)
A Rscfarncicers to tune:

- p:likelihood revisiting node
- @: bias towards neighbors of the previous nodes (BFS)

Figure 2: Illustration of the random walk procedure in node2vec.
The walk just transitioned from ¢ to v and is now evaluating its next
step out of node v. Edge labels indicate search biases .

L cee— —



RANDOM WALK METHODS

* What I1s the objective function ¢

* How to Interpret the distance between nodes In the
embedding !

» =>Dot product/cosine distance (u,v) inversely related to
probability of reaching v from u with a RW of length k



g OlLD MeTRCOES



[

» Laplacian Eigenmaps (2001)

Laplacian Eigenmaps [25] aims to keep the embedding of
two nodes close when the weight W;; is high. Specifically, they
minimize the following objective function

1
pX) = 5 ) Vi~ YiPW,
,J

= tr(Y'LY),

where L is the Laplacian of graph G. The objective function
is subjected to the constraint Y’ DY = [ to eliminate trivial
solution. The solution to this can be obtained by taking the
eigenvectors corresponding to the d smallest eigenvalues of the
normalized Laplacian, L, = a2 o P 2

Main idea:
"High welights must be close”™



B

* Locally linear embedding (published: 2000)

~

LLE [26] assumes that every node is a linear combination
of its neighbors in the embedding space. If we assume that the
adjacency matrix element W;; of graph G represents the weight
of node j in the representation of node i, we define

Yix Y WyY;, VieV.
J

Hence, we can obtain the embedding YV*¢ by minimizing
¢(Y) = Z Y; — Z WY
i J

To remove degenerate solutions, the variance of the embedding
1s constrained as ,IVY Ty = I. To further remove translational
invariance, the embedding is centered around zero: )}; Y; = 0.
The above constrained optimization problem can be reduced to
an eigenvalue problem, whose solution is to take the bottom
d + 1 eigenvectors of the sparse matrix (I — W) (I — W) and
discarding the eigenvector corresponding to the smallest eigen-
value.

L e — = ———



GRAPH FACTORIZATION

R Elslished: 20| 5)

To the best of our knowledge, Graph Factorization [21] was
the first method to obtain a graph embedding in O(|E|) time. To
obtain the embedding, GF factorizes the adjacency matrix of
the graph, minimizing the following loss function

1 A
PED =5 ) Wy= <1,V + 2 3 ITIE,
(i,))eE I

where A 1s a regularization coeflicient. Note that the summation
1s over the observed edges as opposed to all possible edges.
This 1s an approximation in the interest of scalability, and as
such it may introduce noise in the solution. Note that as the ad-
jacency matrix is often not positive semidefinite, the minimum
of the loss function is greater than O even if the dimensionality
of embedding is |V]|.

Simple main idea:
Minimize difference between
Weight and cosine similarity



DEEP-LEARNING BASED



SDNE

* Inturtive definition: a “deep neural network™ “autoencoder”

learns embedding in order to minimize 2 objectives:

» Nodes with similar neighbors should be close
» Connected nodes should be close



SENERIC METHOS



VERSE

* Input: a (normalized) matrix of “similarity’” between nodes
(adjacency, #common nb, personalized PageRank; ...)

: els e KL (simg(o, ) || simg (o, )
Function to minimize: 2, KL (simg(v, ) || sime (v

| — T

» Kullback-Leibler divergence between the original distribution
of similarities (of v to other nodes) and the reconstructed
cosine distance between v and other nodes.



SOME REMARKS ON WHAT
ARE EMBEDDINGS



ADJACENCY MATRIX

* An adjacency matrix is an embedding... (In high dimension)

* [ hat captures... the structural equivalence
» 2 nodes have similar “embeddings” if they have similar neighborhoods

* [radrtional dimensionality reduction of this matrix can be

meaningful




GRAPH LAYOU T

» Graph layouts are also embeddings !
» Force layout, kamada-kawal ...

* [hey try to put connected nodes close to each other and
non-connected ones “not close”

* Problem: they try to avoid overlaps

» Usually not scalable



VISUALLY ¢



VISUALIZATION

* Be careful, embedding in 2 dimensions
» Usually: embedding in |28 dimensions

* Just to give Inturtive Idea



CLIQUE RING

5> cliques or size 20 with | edge between them
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CLIQUE RING

5> cliques or size 20 with | edge between them

N2V

1.0 1.2 1.4 1.6 1.8 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4




EMBEDDING ROLES



B RUCTZVES

* In node2vec/Deepwalk, the context collected by RW contain
the labels of encountered nodes

* Instead, we could memorize the properties of the nodes:
attributes It avallable, or computed attributes (degrees, CC, ...)

« =>Nodes with a same context will be nodes In a same
“position’ In the graph

» =>(Capture the role of nodes instead of proximity



BRUC [ 2VEC : DOUBLE ZISS

-2 -1.5 -1 -0.5 0
(c) struc2vec




NOTION OF DISTANCE [N
EMBEDDINGS



DISTANCE IN EMBEDDINGS

* In embeddings, each node has an associated vector

* We can compute the distance between vectors

» Euclidean distance (L2 norm)
» Manhattan distance (L1 norm)
» Cosine distance

» Dot product

» Does this distance means something?
» What does it means?



DISTANCE IN EMBEDDINGS

* What the distance means Is often determined by what cost
function the embedding tries to minimize

1
= |- ¢(Y) = §Z|Yi_Yj|2Wij
]

» =>node’vec/DeepWWalk: Probabllity to reach after random
walk of distance k



DISTANCE IN EMBEDDINGS

» Several possibilities:
» Distance preserves the probability of having an edge

- We can reconstruct the network from distances

» Distance preserves the similarity of nheighborhood
- (Called Structural equivalence

» Distance preserves the role in the network
Sslci o deline

» Distance preserves the community structure

- Or another type of mesoscopic organization?



DISTANCE IN EMBEDDINGS

» Distance <=> having an edge!
* For each node:
» |)Find the neighbors in the graph. Number of N is k

» 2)Find the k closest nodes in the embedding
» 3)Compute the fraction of nodes in common in |) and 2)

» Compute the average over all nodes

* Dissimilarity = |-simmilarrty



DISTANCE IN EMBEDDINGS

Neighbors_dissimilarity ZKC

Neighbors_dissimilarity LFR

L owest Is better

1.0 Tansaact e 1.0
b e L e BT
+ T T e LT O gt +
+.4 t++++++ 4+
&t 329 ,§.~i%¢ tittssbittsi :
+ L4 :
N ¥ &
084", *? 0.8 - Ii%$¢%+i$$ f%*$$$i¥+¥ +f¢$§¥i$
+ LE + ++ =T ++ T s+t
+
> b + LLE + *
£ * o+ ) MR +
5 +, + MDS Fre © "
EO061 + HOPE o E 061 T +
0 ‘0
K it +  s2v + + 0 + +
- ‘;H:h. N KKL ++ Eo) + LLE . i
(%] %]
) T +  n2v_p05_q4 ™ S +oMDs +
S 0.4 A H oy -5 i 2 049 + HOPE T+ ++
o + % +  n2v_p4_qo05 + S +
= * 'F"m## V + = +  KKL + + +t+
0.2 1 4y T +#+¢*+ 024 © Nevposad : ++,
' H -#"’#+ ' +  n2v_p4 _qo5 +
+ g - = ++ 4
T +  svd t,
e +  verse
0-0 I I T I 0.0 1 1 1 1 I I
0 20 40 60 80 100 0 5 10 15 20 25 30
Dimension Dimension




DISTANCE IN EMBEDDINGS

» Conclusion:
» Most algorithms do not preserve this property

« Some of them do 1t for some number of dimensions



STRUCTURAL EQUIVALENCE

* For each pair of nodes:

» | )Compute cosine distance between row of the adjacency matrix
- Distance between neighborhoods

» 2)Compute distance in the embedding
» 3)Compute Correlation (Pearson) between both ordered sets of values

» =>How strongly both distances are correlated



Pearson coefficient

STRUCTURAL EQUIVALENCE
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STRUCTURAL EQUIVALENCE

» Conclusion:
* Many algorithms do not preserve this property

* Some algorithms do it
» And In that case, the most dimensions, the better



COMMUNITY STRUCTURE

» |dea: If distance preserves community structure:

» Nodes belonging to the same community should be close in the embedding

* We can use clustering algorithms (k-means...) to discover the
communities



COMMUNITY STRUCTURE

» | )Create a network with a community structure

» 2)Use k-means clustering on embedding to detect the
community structure

» 3)Compare expected to k-means using the aNM|



BOMMUNITY S TRUCTFOSSE

Planted partitions. 8 dimensions
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COMMUNITY STRUCTURE

Planted partitions. 8 dimensions
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BOMMUNITY S TRUCTFOSSE

Planted partitions. |28 dimensions
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COMMUNITY STRUCTURE

» Conclusion (to be verified)
* It we know the number of clusters to find
» And we can use a large number of dimensions

» =>Embeddings can beat traditional algorithms



LINK PREDICTION WITH
EMBEDDINGS



LINK PREDICTION

« Reminder:

» Unsupervised link prediction

» Compute a score of similarity between pairs of nodes
» =>Highest score: more probable links

» Supervised link prediction

» Compute several features about pairs of nodes
» Train a classifier to learn edges from features



LINK PREDICTION

* Unsupervised link prediction from embeddings
» =>Compute the distance between nodes In the embedding

» =>Use It as a similarity score



LINK PREDICTION

* Supervised link prediction from embeddings

» =>embeddings provide features for nodes (nb features:
dimensions)

» Combine nodes features to obtain edge features

» =>Train a classifier to predict edges based on features from
the embedding



LINK PREDICTION

Operator Result

Average (a+b)/2

Concat (0,550 5 5 Aty Dy s s by]
Hadamard [a; xbq,..., ag *by]
Weighted L1 [|la; — bq],..., lag — byl]
Weighted L2 (a; —b1)%, ..., (ag —by)?]

r————

Combining nodes vectors Into edge vectors



LINK PREDICTION

« How well does it works ?

» According to recent articles

» Node2vec (2016)
e EROE (20 8)

« =>[hese methods are better than state of the art



LINK PREDICTION

» Our tests: not really

* Embeddings are better only If we use some particular tests
settings
» Accuracy score on balanced test sets (VWRONG)
» Supervised LP for embeddings compared with unsupervised heuristics



LINK PREDICTION

ROC(-1) S _FACEBOOK

AP(-1)_S_FACEBOOK

0.8
1.00 | :/.f - ® - £ . * ® L ®
0.7 -
0.95 -
0.6 -
0.90 A
0.5 -
0.85 A 0.4
0.80 - 0.3 -
0.75 0.2 1 ——&— HEURISTICS
. —&— LE
0.1 - _*_ HOPE
0.70 A —¥— N2V
T T T T T I ! ! 0'0 1 T T T T T T T T VERSE
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
C——————— T —————— —————




LINK PREDICTION

ROC(-1)_S_ASTROPH
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LINK PREDICTION

* 50, embeddings not interesting?
» =>Not at all

» Different embeddings capture different things

» Being directly linked

» Having same neighbors
» Community structure
RGeS

» They all provides “features’ we can use as input to classifiers

» =>Qur current project: combine them to do better link
prediction



AU T AR

» | )Continue last week practicals (link prediction)

» 2)Compute embeddings using layouts from networkx

» Function spring_layout (options: dimensions, iterations. . .)

» 3)Evaluate quality of link prediction using AUC/AP

» Compare with other methods

* 4) (Advanced) Use “real” embeddings and compare the results

» https://github.com/palash [992/GEM
» https:/github.com/xgts/verse



https://github.com/palash1992/GEM
https://github.com/xgfs/verse

PROIECT:
EXAMPLE DATASETS

»  LastFM: https:/labrosa.ee.columbia.edu/millionsong/lastfm
»  Million Song dataset: https://labrosa.ee.columbia.edu/millionsong/

 Movies:

» Internet Movie Database: https://www.imdb.com/interfaces/
> https//www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
» Movielens: https://grouplens.org/datasets/movielens/

* Food:

»  Open food facts: https://world.openfoodfacts.org
* List of datasets:

> https//www.kdnuggets.com/datasets/index.html
* List of list of datasets:

»  https://towardsdatascience.com/cool-data-sets-ive-found-adc | /cSebSe |

* Colombia open data:

»  https://www.datos.gov.co/browselsortBy=newest

4
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