
NETWORK EMBEDDING



NAMES

• Graph embedding / Network embedding

• Representation learning on networks
‣ Wikipedia: Representation learning = feature learning, as opposed 

to manual feature engineering

• Embedding => Latent space



IN CONCRETE TERMS

• A graph is composed of
‣ Nodes (possibly with labels)
‣ Edges (possibly directed, weighted, with labels)

• A graph embedding technique in d dimension will assign a 
vector of length d to each node, that will be useful for *what 
we want to do with the graph*.

• A vector can be assigned to an edge (u,v) by combining 
vectors of u and v



WHAT TO DO WITH 
EMBEDDINGS?

• Two possible ways to use an embedding:
‣ Supervised learning:

- Algorithm learn to predict *something* from the features in the embedding
‣ Unsupervised learning:

- The distance between vectors in the embedding is used for *something*



WHAT CAN WE DO WITH 
EMBEDDINGS ?



EMBEDDING TASKS

• Common tasks:
‣ Link prediction (supervised)
‣ Graph reconstruction (unsupervised link prediction ? / ad hoc)
‣ Community detection (unsupervised)
‣ Node classification (supervised community detection ?)
‣ Visualisation (distances, like unsupervised)
‣ Role definition (unsupervised, some special embeddings)



OVERVIEW OF MOST 
POPULAR METHODS



1. RANDOM WALK BASED



DEEPWALK

• The first “modern” graph embedding method

• Adaptation of word2vec/skipgram to graphs



SKIPGRAM
Word embedding

Natural language => vectors

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]



SKIPGRAM



GENERIC “SKIPGRAM”

• Algorithm that takes an input:
‣ The element to embed
‣ A list of “context” elements

• Provide as output:
‣ An embedding with nice properties

- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure



GENERIC “SKIPGRAM”

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


GENERIC “SKIPGRAM”

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


DEEPWALK

• Skipgram for graphs: 
‣ 1)Generate “sentences” using random walks
‣ 2)Apply Skipgram

• Parameters: dimensions d, RW length k



NODE2VEC
• Use biased random walk to tune the context to capture what 

we want
‣ “Breadth first” like RW => local neighborhood (edge probability ?)
‣ “Depth-first” like RW => global structure ? (Communities ?)
‣ 2 parameters to tune:

- p: likelihood revisiting node
- q: bias towards neighbors of the previous nodes (BFS)



RANDOM WALK METHODS

• What is the objective function ?

• How to interpret the distance between nodes in the 
embedding ?

• =>Dot product/cosine distance (u,v) inversely related to 
probability of reaching v from u with a RW of length k



II. “OLD” METHODS



LE
• Laplacian Eigenmaps (2001) 

graphs with millions of nodes and edges. In the following, we
provide historical context about the research progress in this
domain (§3.1), then propose a taxonomy of graph embedding
techniques (§3.2) covering (i) factorization methods (§3.3), (ii)
random walk techniques (§3.4), (iii) deep learning (§3.5), and
(iv) other miscellaneous strategies (§3.6).

3.1. Graph Embedding Research Context and Evolution
In the early 2000s, researchers developed graph embedding

algorithms as part of dimensionality reduction techniques. They
would construct a similarity graph for a set of n D-dimensional
points based on neighborhood and then embed the nodes of the
graph in a d-dimensional vector space, where d ⌧ D. The idea
for embedding was to keep connected nodes closer to each other
in the vector space. Laplacian Eigenmaps [25] and Locally Lin-
ear Embedding (LLE) [26] are examples of algorithms based on
this rationale. However, scalability is a major issue in this ap-
proach, whose time complexity is O(|V |2).

Since 2010, research on graph embedding has shifted to ob-
taining scalable graph embedding techniques which leverage
the sparsity of real-world networks. For example, Graph Fac-
torization [21] uses an approximate factorization of the adja-
cency matrix as the embedding. LINE [22] extends this ap-
proach and attempts to preserve both first order and second
proximities. HOPE [24] extends LINE to attempt preserve high-
order proximity by decomposing the similarity matrix rather
than adjacency matrix using a generalized Singular Value De-
composition (SVD). SDNE [23] uses autoencoders to embed
graph nodes and capture highly non-linear dependencies. The
new scalable approaches have a time complexity of O(|E|).

3.2. A Taxonomy of Graph Embedding Methods
We propose a taxonomy of embedding approaches. We cat-

egorize the embedding methods into three broad categories: (1)
Factorization based, (2) Random Walk based, and (3) Deep
Learning based. Below we explain the characteristics of each of
these categories and provide a summary of a few representative
approaches for each category (cf. Table 1), using the notation
presented in Table 2.

3.3. Factorization based Methods
Factorization based algorithms represent the connections be-

tween nodes in the form of a matrix and factorize this matrix
to obtain the embedding. The matrices used to represent the
connections include node adjacency matrix, Laplacian matrix,
node transition probability matrix, and Katz similarity matrix,
among others. Approaches to factorize the representative ma-
trix vary based on the matrix properties. If the obtained matrix
is positive semidefinite, e.g. the Laplacian matrix, one can use
eigenvalue decomposition. For unstructured matrices, one can
use gradient descent methods to obtain the embedding in linear
time.

3.3.1. Locally Linear Embedding (LLE)
LLE [26] assumes that every node is a linear combination

of its neighbors in the embedding space. If we assume that the
adjacency matrix element Wi j of graph G represents the weight
of node j in the representation of node i, we define

Yi ⇡
X

j

Wi jY j 8i 2 V.

Hence, we can obtain the embedding YN⇥d by minimizing

�(Y) =
X

i

|Yi �
X

j

Wi jY j|2,

To remove degenerate solutions, the variance of the embedding
is constrained as 1

N YT Y = I. To further remove translational
invariance, the embedding is centered around zero:

P
i Yi = 0.

The above constrained optimization problem can be reduced to
an eigenvalue problem, whose solution is to take the bottom
d + 1 eigenvectors of the sparse matrix (I � W)T (I � W) and
discarding the eigenvector corresponding to the smallest eigen-
value.

3.3.2. Laplacian Eigenmaps
Laplacian Eigenmaps [25] aims to keep the embedding of

two nodes close when the weight Wi j is high. Specifically, they
minimize the following objective function

�(Y) =
1
2

X

i, j

|Yi � Yj|2Wi j

= tr(YT LY),

where L is the Laplacian of graph G. The objective function
is subjected to the constraint YT DY = I to eliminate trivial
solution. The solution to this can be obtained by taking the
eigenvectors corresponding to the d smallest eigenvalues of the
normalized Laplacian, Lnorm = D�1/2LD�1/2.

3.3.3. Cauchy Graph Embedding
Laplacian Eigenmaps uses a quadratic penalty function on

the distance between embeddings. The objective function thus
emphasizes preservation of dissimilarity between nodes more
than their similarity. This may yield embeddings which do not
preserve local topology, which can be defined as the equality
between relative order of edge weights (Wi j) and inverse order
of distances in the embedded space (|Yi � Yj|2). Cauchy Graph
Embedding [32] tackles this problem by replacing the quadratic
function |Yi � Yj|2 with |Yi�Yj |2

|Yi�Y j |2+�2 . Upon rearrangement, the ob-
jective function to be maximized becomes

�(Y) =
X

i, j

Wi j

|Yi � Yj|2 + �2 ,

with constraints YT Y = I and
P

i Yi = 0 for each i. The new
objective is an inverse function of distance and thus puts em-
phasis on similar nodes rather than dissimilar nodes. The au-
thors propose several variants including Gaussian, Exponential
and Linear embeddings with varying relative emphasis on the
distance between nodes.
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Main idea:
“High weights must be close”



LLE
• Locally linear embedding (published: 2000)



GRAPH FACTORIZATION
• (published: 2013)

Simple main idea: 
Minimize difference between
Weight and cosine similarity

Category Year Published Method Time Complexity Properties preserved

Factorization

2000 Science[26] LLE O(|E|d2)
2001 NIPS[25] Laplacian Eigenmaps O(|E|d2) 1st order proximity
2013 WWW[21] Graph Factorization O(|E|d)
2015 CIKM[27] GraRep O(|V |3)
2016 KDD[24] HOPE O(|E|d2) 1 � kth order proximities

Random Walk
2014 KDD[28] DeepWalk O(|V |d)
2016 KDD[29] node2vec O(|V |d) 1 � kth order proximities,

structural equivalence

Deep Learning
2016 KDD[23] SDNE O(|V ||E|) 1st and 2nd order proximities
2016 AAAI[30] DNGR O(|V |2) 1 � kth order proximities
2017 ICLR[31] GCN O(|E|d2) 1 � kth order proximities

Miscellaneous 2015 WWW[22] LINE O(|E|d) 1st and 2nd order proximities

Table 1: List of graph embedding approaches

G Graphical representation of the data

V Set of vertices in the graph

E Set of edges in the graph

d Number of dimensions

Y Embedding of the graph, |V | ⇥ d

Yi Embedding of node vi, 1 ⇥ d (also ith row of Y)

Ys Source embedding of a directed graph, |V | ⇥ d

Yt Target embedding of a directed graph, |V | ⇥ d

W Adjacency matrix of the graph, |V | ⇥ |V |
D Diagonal matrix of the degree of each vertex, |V | ⇥ |V |
L Graph Laplacian (L = D �W), |V | ⇥ |V |

< Yi,Y j > Inner product of Yi and Y j i.e. YiYT
j

S Similarity matrix of the graph, |V | ⇥ |V |

Table 2: Summary of notation

3.3.4. Structure Preserving Embedding (SPE)
Structure Preserving Embedding ([33]) is another approach

which extends Laplacian Eigenmaps. SPE aims to reconstruct
the input graph exactly. The embedding is stored as a posi-
tive semidefinite kernel matrix K and a connectivity algorithm
G is defined which reconstructs the graph from K. The ker-
nel K is chosen such that it maximizes tr(KW) which attempts
to recover rank-1 spectral embedding. Choice of the connec-
tivity algorithm G induces constraints on this objective func-
tion. For e.g., if the connectivity scheme is to connect each
node to neighbors which lie within a ball of radius ✏, the con-
straint (Kii + Kj j � 2Ki j)(Wi j � 1/2)  ✏(Wi j � 1/2) produces
a kernel which can perfectly reconstruct the original graph. To
handle noise in the graph, a slack variable is added. For ⇠-
connectivity, the optimization thus becomes max tr(KA) � C⇠
s.t. (Kii + Kj j � 2Ki j)(Wi j � 1/2)  ✏(Wi j � 1/2) � ⇠, where ⇠ is
the slack variable and C controls slackness.

3.3.5. Graph Factorization (GF)
To the best of our knowledge, Graph Factorization [21] was

the first method to obtain a graph embedding in O(|E|) time. To
obtain the embedding, GF factorizes the adjacency matrix of
the graph, minimizing the following loss function

�(Y, �) =
1
2

X

(i, j)2E
(Wi j� < Yi,Yj >)2 +

�

2

X

i

kYik2,

where � is a regularization coe�cient. Note that the summation
is over the observed edges as opposed to all possible edges.
This is an approximation in the interest of scalability, and as
such it may introduce noise in the solution. Note that as the ad-
jacency matrix is often not positive semidefinite, the minimum
of the loss function is greater than 0 even if the dimensionality
of embedding is |V |.

3.3.6. GraRep
GraRep [27] defines the node transition probability as T =

D�1W and preserves k-order proximity by minimizing kXk �
Yk

s YkT
t k2F where Xk is derived from T k (refer to [27] for a de-

tailed derivation). It then concatenates Yk
s for all k to form

Ys. Note that this is similar to HOPE [24] which minimizes
kS � YsYT

t k2F where S is an appropriate similarity matrix. The
drawback of GraRep is scalability, since T k can have O(|V |2)
non-zero entries.

3.3.7. HOPE
HOPE [24] preserves higher order proximity by minimiz-

ing kS � YsYT
t k2F , where S is the similarity matrix. The au-

thors experimented with di↵erent similarity measures, includ-
ing Katz Index, Rooted Page Rank, Common Neighbors, and
Adamic-Adar score. They represented each similarity measure
as S = M�1

g Ml, where both Mg and Ml are sparse. This enables
HOPE to use generalized Singular Value Decomposition (SVD)
[34] to obtain the embedding e�ciently.
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DEEP-LEARNING BASED



SDNE

• Intuitive definition: a “deep neural network”  “autoencoder” 
learns embedding in order to minimize 2 objectives:
‣ Nodes with similar neighbors should be close
‣ Connected nodes should be close



GENERIC METHOD



VERSE

• Input: a (normalized) matrix of “similarity” between nodes 
(adjacency, #common nb, personalized PageRank, …)

• Function to minimize: 

• Kullback-Leibler divergence between the original distribution 
of similarities (of v to other nodes) and the reconstructed 
cosine distance between v and other nodes.



SOME REMARKS ON WHAT 
ARE EMBEDDINGS



ADJACENCY MATRIX

• An adjacency matrix is an embedding… (in high dimension)

• That captures… the structural equivalence
‣ 2 nodes have similar “embeddings” if they have similar neighborhoods

• Traditional dimensionality reduction of this matrix can be 
meaningful



GRAPH LAYOUT

• Graph layouts are also embeddings !
‣ Force layout, kamada-kawai ….

• They try to put connected nodes close to each other and 
non-connected ones “not close”

• Problem: they try to avoid overlaps

• Usually not scalable



VISUALLY ?



VISUALIZATION

• Be careful, embedding in 2 dimensions

• Usually: embedding in 128 dimensions

• Just to give intuitive idea



CLIQUE RING
5 cliques or size 20 with 1 edge between them

LE LLE

Spring layout
SDNE



CLIQUE RING
5 cliques or size 20 with 1 edge between them

n2v



EMBEDDING ROLES



STRUCT2VEC

• In node2vec/Deepwalk, the context collected by RW contain 
the labels of encountered nodes

• Instead, we could memorize the properties of the nodes: 
attributes if available, or computed attributes (degrees, CC, …)

• =>Nodes with a same context will be nodes in a same 
“position” in the graph

• =>Capture the role of nodes instead of proximity



STRUCT2VEC : DOUBLE ZKC



NOTION OF DISTANCE IN 
EMBEDDINGS



DISTANCE IN EMBEDDINGS

• In embeddings, each node has an associated vector

• We can compute the distance between vectors
‣ Euclidean distance (L2 norm)
‣ Manhattan distance (L1 norm)
‣ Cosine distance 
‣ Dot product

• Does this distance means something?
‣ What does it means?



DISTANCE IN EMBEDDINGS

• What the distance means is often determined by what cost 
function the embedding tries to minimize

• => LE:

• =>node2vec/DeepWalk: Probability to reach after random 
walk of distance k 

graphs with millions of nodes and edges. In the following, we
provide historical context about the research progress in this
domain (§3.1), then propose a taxonomy of graph embedding
techniques (§3.2) covering (i) factorization methods (§3.3), (ii)
random walk techniques (§3.4), (iii) deep learning (§3.5), and
(iv) other miscellaneous strategies (§3.6).

3.1. Graph Embedding Research Context and Evolution
In the early 2000s, researchers developed graph embedding

algorithms as part of dimensionality reduction techniques. They
would construct a similarity graph for a set of n D-dimensional
points based on neighborhood and then embed the nodes of the
graph in a d-dimensional vector space, where d ⌧ D. The idea
for embedding was to keep connected nodes closer to each other
in the vector space. Laplacian Eigenmaps [25] and Locally Lin-
ear Embedding (LLE) [26] are examples of algorithms based on
this rationale. However, scalability is a major issue in this ap-
proach, whose time complexity is O(|V |2).

Since 2010, research on graph embedding has shifted to ob-
taining scalable graph embedding techniques which leverage
the sparsity of real-world networks. For example, Graph Fac-
torization [21] uses an approximate factorization of the adja-
cency matrix as the embedding. LINE [22] extends this ap-
proach and attempts to preserve both first order and second
proximities. HOPE [24] extends LINE to attempt preserve high-
order proximity by decomposing the similarity matrix rather
than adjacency matrix using a generalized Singular Value De-
composition (SVD). SDNE [23] uses autoencoders to embed
graph nodes and capture highly non-linear dependencies. The
new scalable approaches have a time complexity of O(|E|).

3.2. A Taxonomy of Graph Embedding Methods
We propose a taxonomy of embedding approaches. We cat-

egorize the embedding methods into three broad categories: (1)
Factorization based, (2) Random Walk based, and (3) Deep
Learning based. Below we explain the characteristics of each of
these categories and provide a summary of a few representative
approaches for each category (cf. Table 1), using the notation
presented in Table 2.

3.3. Factorization based Methods
Factorization based algorithms represent the connections be-

tween nodes in the form of a matrix and factorize this matrix
to obtain the embedding. The matrices used to represent the
connections include node adjacency matrix, Laplacian matrix,
node transition probability matrix, and Katz similarity matrix,
among others. Approaches to factorize the representative ma-
trix vary based on the matrix properties. If the obtained matrix
is positive semidefinite, e.g. the Laplacian matrix, one can use
eigenvalue decomposition. For unstructured matrices, one can
use gradient descent methods to obtain the embedding in linear
time.

3.3.1. Locally Linear Embedding (LLE)
LLE [26] assumes that every node is a linear combination

of its neighbors in the embedding space. If we assume that the
adjacency matrix element Wi j of graph G represents the weight
of node j in the representation of node i, we define

Yi ⇡
X

j

Wi jY j 8i 2 V.

Hence, we can obtain the embedding YN⇥d by minimizing

�(Y) =
X

i

|Yi �
X

j

Wi jY j|2,

To remove degenerate solutions, the variance of the embedding
is constrained as 1

N YT Y = I. To further remove translational
invariance, the embedding is centered around zero:

P
i Yi = 0.

The above constrained optimization problem can be reduced to
an eigenvalue problem, whose solution is to take the bottom
d + 1 eigenvectors of the sparse matrix (I � W)T (I � W) and
discarding the eigenvector corresponding to the smallest eigen-
value.

3.3.2. Laplacian Eigenmaps
Laplacian Eigenmaps [25] aims to keep the embedding of

two nodes close when the weight Wi j is high. Specifically, they
minimize the following objective function

�(Y) =
1
2

X

i, j

|Yi � Yj|2Wi j

= tr(YT LY),

where L is the Laplacian of graph G. The objective function
is subjected to the constraint YT DY = I to eliminate trivial
solution. The solution to this can be obtained by taking the
eigenvectors corresponding to the d smallest eigenvalues of the
normalized Laplacian, Lnorm = D�1/2LD�1/2.

3.3.3. Cauchy Graph Embedding
Laplacian Eigenmaps uses a quadratic penalty function on

the distance between embeddings. The objective function thus
emphasizes preservation of dissimilarity between nodes more
than their similarity. This may yield embeddings which do not
preserve local topology, which can be defined as the equality
between relative order of edge weights (Wi j) and inverse order
of distances in the embedded space (|Yi � Yj|2). Cauchy Graph
Embedding [32] tackles this problem by replacing the quadratic
function |Yi � Yj|2 with |Yi�Yj |2

|Yi�Y j |2+�2 . Upon rearrangement, the ob-
jective function to be maximized becomes

�(Y) =
X

i, j

Wi j

|Yi � Yj|2 + �2 ,

with constraints YT Y = I and
P

i Yi = 0 for each i. The new
objective is an inverse function of distance and thus puts em-
phasis on similar nodes rather than dissimilar nodes. The au-
thors propose several variants including Gaussian, Exponential
and Linear embeddings with varying relative emphasis on the
distance between nodes.
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DISTANCE IN EMBEDDINGS

• Several possibilities:
‣ Distance preserves the probability of having an edge

- We can reconstruct the network from distances 
‣ Distance preserves the similarity of neighborhood

- Called Structural equivalence
‣ Distance preserves the role in the network

- Hard to define
‣ Distance preserves the community structure

- Or another type of mesoscopic organization?



DISTANCE IN EMBEDDINGS

• Distance <=> having an edge?

• For each node:
‣ 1)Find the neighbors in the graph. Number of N is k
‣ 2)Find the k closest nodes in the embedding
‣ 3)Compute the fraction of nodes in common in 1) and 2)

• Compute the average over all nodes

• Dissimilarity = 1-simmilarity



DISTANCE IN EMBEDDINGS

|V |/2

Lowest is better



DISTANCE IN EMBEDDINGS

• Conclusion: 

• Most algorithms do not preserve this property

• Some of them do it for some number of dimensions



STRUCTURAL EQUIVALENCE

• For each pair of nodes:
‣ 1)Compute cosine distance between row of the adjacency matrix

- Distance between neighborhoods
‣ 2)Compute distance in the embedding
‣ 3)Compute Correlation (Pearson) between both ordered sets of values

• =>How strongly both distances are correlated



STRUCTURAL EQUIVALENCE

pin = 0.8 pout = 0.2



STRUCTURAL EQUIVALENCE

• Conclusion:

• Many algorithms do not preserve this property

• Some algorithms do it
‣ And in that case, the most dimensions, the better



COMMUNITY STRUCTURE

• Idea: if distance preserves community structure:
‣ Nodes belonging to the same community should be close in the embedding

• We can use clustering algorithms (k-means…) to discover the 
communities



COMMUNITY STRUCTURE

• 1)Create a network with a community structure

• 2)Use k-means clustering on embedding to detect the 
community structure

• 3)Compare expected to k-means using the aNMI



COMMUNITY STRUCTURE
Planted partitions. 8 dimensions



COMMUNITY STRUCTURE
Planted partitions. 8 dimensions

CD algorithms



COMMUNITY STRUCTURE
Planted partitions. 128 dimensions



COMMUNITY STRUCTURE

• Conclusion (to be verified)

• If we know the number of clusters to find

• And we can use a large number of dimensions

• =>Embeddings can beat traditional algorithms



LINK PREDICTION WITH 
EMBEDDINGS



LINK PREDICTION

• Reminder: 

• Unsupervised link prediction
‣ Compute a score of similarity between pairs of nodes
‣ =>Highest score: more probable links

• Supervised link prediction
‣ Compute several features about pairs of nodes
‣ Train a classifier to learn edges from features



LINK PREDICTION

• Unsupervised link prediction from embeddings

• =>Compute the distance between nodes in the embedding

• =>Use it as a similarity score



LINK PREDICTION

• Supervised link prediction from embeddings

• =>embeddings provide features for nodes (nb features: 
dimensions)
‣ Combine nodes features to obtain edge features

• =>Train a classifier to predict edges based on features from 
the embedding



LINK PREDICTION

Combining nodes vectors into edge vectors



LINK PREDICTION

• How well does it works ?

• According to recent articles
‣ Node2vec (2016)
‣ VERSE (2018)

• =>These methods are better than state of the art



LINK PREDICTION

• Our tests: not really

• Embeddings are better only if we use some particular tests 
settings
‣ Accuracy score on balanced test sets (WRONG)
‣ Supervised LP for embeddings compared with unsupervised heuristics



LINK PREDICTION



LINK PREDICTION



LINK PREDICTION
• So, embeddings not interesting?

‣ =>Not at all!

• Different embeddings capture different things
‣ Being directly linked
‣ Having same neighbors
‣ Community structure
‣ Roles

• They all provides “features” we can use as input to classifiers

• =>Our current project: combine them to do better link 
prediction



PRACTICALS

• 1)Continue last week practicals (link prediction)

• 2)Compute embeddings using layouts from networkx
‣ Function spring_layout (options: dimensions, iterations…)

• 3)Evaluate quality of link prediction using AUC/AP
‣ Compare with other methods

• 4) (Advanced) Use “real” embeddings and compare the results
‣ https://github.com/palash1992/GEM
‣ https://github.com/xgfs/verse

https://github.com/palash1992/GEM
https://github.com/xgfs/verse


PROJECT: 
EXAMPLE DATASETS

• Music: 
‣ LastFM: https://labrosa.ee.columbia.edu/millionsong/lastfm
‣ Million Song dataset: https://labrosa.ee.columbia.edu/millionsong/

• Movies: 
‣ Internet Movie Database: https://www.imdb.com/interfaces/
‣ https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
‣ MovieLens: https://grouplens.org/datasets/movielens/

• Food: 
‣ Open food facts: https://world.openfoodfacts.org

• List of datasets:
‣ https://www.kdnuggets.com/datasets/index.html

• List of list of datasets:
‣ https://towardsdatascience.com/cool-data-sets-ive-found-adc17c5e55e1

• Colombia open data:
‣ https://www.datos.gov.co/browse?sortBy=newest
‣

https://labrosa.ee.columbia.edu/millionsong/lastfm
https://labrosa.ee.columbia.edu/millionsong/
https://www.imdb.com/interfaces/
https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
https://grouplens.org/datasets/movielens/
https://world.openfoodfacts.org
https://www.kdnuggets.com/datasets/index.html
https://towardsdatascience.com/cool-data-sets-ive-found-adc17c5e55e1
https://www.datos.gov.co/browse?sortBy=newest

