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SUPERVISED ME

» Certainly the most successful branch of ML currently

* [raining a computer program (algorithm) to learn through
examples

» lasks:

» Predict the weather, the climate
» Recognize objects/people in pictures
el




SUPERVISED ME

* [wo main objectives, with similar solutions

* Regression: predict a numerical value

B RpEratlre; cost, grade, etc.

» Classification: predict a class/label/category

» Success/Fallure, Blue/Red/Yellow, which animal among 1000 possibles, etc.



PREDICTING VS EXPLAINING

* Final goal I1s prediction:
» Supervised ML is obviously what you need

- No need of interpretability, you just care about accuracy

* Final goal Is understanding your data

» “ls product X causing cancer {"

» => |f your model is the best at predicting if people will get cancer or not, It Is
ikely the best at capturing the effect of X on cancer.
- But of course, problem of explainability ... XAl ?



PROGRAM

Bl process
* Simple methods

» Linear Regression
» Decision trees

» Objectives for regression
@) et
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BUFERVISED ML - PROCESS

» Let's say we want to predict the price of apartments. VWe have
a collection of examples, for now In comparable settings (same

neighborhood of the same city...)

* We have access to some characteristics of apartments:

» Surface Area, # of rooms, # of windows, Elevator...

* This is typically a Regression problem.



BUFERVISED ML - PROCESS

BRSSP etine the objective

» Objective function / Score

» =>Measurement of average errors made by the model
R BiE e



Er |1 RE OBJECTING

- Before applying any method, set up an objective/a
quality score/an error measure

- We want to decide on the best method among candidates

* lypical scores for regression:

» MSE, RMSE: (Root) Mean Square Error
BRI =R eani Absolute Error

»Rz



MEAN SQUARED ERROR
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* Similarity with the Variance

» Using squared errors give stronger importance to large errors
» Strenght and weakness (outliers)

* RMSE = \/ MSE, can be easier to interpret

* Simple to interpret

» The lower the value, lower the error, better the prediction



MEAN ABSOLU TE ERROR
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* Similarity with the MAD (Mean Absolute Deviation),
comparing values with predictions instead of simple mean.

* Inturtive interpretation (not a root of a square)

» =>Better with heavy talled distribution In the target



R?* (R-SQUARED)
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 Normalized MSE

» Quantifies the fraction of the variance that is explained by the prediction
» Sometimes called the coefficient of determination for linear regression

» | =>Perfect prediction.

» Negative If the prediction Is worse than using the average for prediction
(=Variance)



EVALUATION/OBJECTIVE

* Which one should you use!

» Different literature have their favorite one. RMSE Is probably the most popular
currently

* |f you're not writing a paper or playing a competition, use all of
them
» More information can allow you to judge better. There Is no “truth’.



BUFERVISED ML - PROCESS

 STEP 2: Define baselines

» How good Is the prediction with a naive model?
» Can our model improve over those models?

S R© 7 mtleR



BASELINE

» Let's define our baseline, our reference to improve on
* Let's assume we only know the target variable

- Using statistics, we know that the best “prediction” we can do
for the price of a future apartment, with no addrtional

information (features) will be

» The average (for MSE)
» The median (for MAE)
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BASELINE
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Using Mean=516/6 Using Median=43086

MSE 1105345073.7155044
RMSE 33246.73027104326

MSE 1179133659.4166086
RMSE 34338.51568452848
MAE 22740.967725747014
R2 0.0

MAE 21658.66828240126
R2 -0.06675615376207489

MAE lower

RMSE lower



LINEAR REGRESSION

* Let's assume that we know one apartment attribute: Surface
area. We can plot the relation between Surface and Price

BRIRERESEEms to be a linear relationship
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LINEAR REGRESSION

- We will use linear regression method, and more
specifically Ordinary Least Square. First, with a single
variable:

» We assume that y, = f, + fix; + €

» larget value=constant+(constant*feature)+normally distributed (random)
errors

» 1=>1th example In our dataset

The objective of linear regression Is to find parameters

= Po, 1}

» Such as to minimize the MSE,

» Considering that the prediction is: y; = B, + fx;
- Eauivalently: y = fy + fix



LINEAR REGRESSION

* We solve this problem, and obtain:
4 /20::ﬂ923:7
4 ‘/31:::77:7€9
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150000 H

MSE 20668278.463901177
RMSE 4546.237836266508
MAE 3512.3861644882704
R2 0.9813015148342528
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LINEAR REGRESSION

* We solve this problem, and obtain:

Using Mean

MSE 1105345073.7155044
RMSE 33246.73027104326
MAE 22740.967725747014
R2 0.0

Using Median

MSE 1179133659.4166086
RMSE 34338.51568452848
MAE 21658.66828240126

R2 -0.06675615376207489

Using

Linear Regression

MSE 20668278.463901177
RMSE 4546.237836266508
MAE 3512.3861644882704
R2 0.9813015148342528



LINEAR REGRESSION

Darameters
W =ce ()
» B,=779 1000

Using
Linear Regression

MSE 206682/8.463901177
RMSE 4546.237/836266508
MAE 3512.3861644882704
R2 0.9813015148342528

* Note: o generate the data, | used indeed a linear model, with

Using
"Real” generative model

MSE 20863741.73315057
RMSE 4567.68450455486
MAE 3506.783422078361
R2 0.9811246802204318



LINEAR REGRESSION

* In real life, we usually have more than | parameter
» New dataset, prices depends on surface AND floor
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LINEAR REGRESSION

» General formulation with any number of attribute

Yy =Pyt P+ Poxy +
» Searching for the different coefficients

Surfaces only

MSE 388200345.3991482
RMSE 19702.800445600322
MAE 16757.480694933285
R2 0.7329146952183824

(Generative
Found

e
~2lElnale

e

Floor only

MSE 785600976.607142

RMSE 28028.57428780747
MAE 22165.777484397917
R2 0.34222807880552575

All features

MSE 22157971.6387145
RMSE 4707.225471412486
MAE 3617.346073048316
R2 0.9847551176123155
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LINEAR REGRESSION

* Linear regression works :)

» But what happens Iif relations are not linear?
» Assume that Price & log(surface)™ |00 000 ?

Linear regression

e MSE 474131230.6072998
600000 | RMSE 21774.554659218633
MAE 16958.426496791166
R2 0.8437196622358905

550000 A
500000 H
450000 A
400000 -

Real model

£ MSE 23408487.920127597

250000 - = " == e RMSE 4838.231900201518
MAE 4057.8096200606243
R2 0.9922842323758786

300000 H




LINEAR REGRESSION

* Linear regression works If there are indeed linear relations

» But there Is no particular reason for relations to be linear

* In many scientific domains (e.g., epidemiology, biology,
econometrics, etc.), linear regression is still widely used.
» Why!
- Force of habits
- Explainability
- Good enough with scarce data



LS STRENGTH

» Analytical solution: f# = (X X))~ X"y
» With X the feature matrix

* An analytical solution guarantees to find the optimal solution
» Possible to do before the generalization of computers

SBliiaere are

» Many variables, matrix inversion becomes a bottleneck OW>)

» Many observations, matrix multiplication goes O(nv)
» Solution=>Gradient descent (Reach global optimum for OLS)



LS OPTIMALITE

* If some conditions are respected, OLS is optimal to solve
the problem. No other method can outperform It.

» The problem Is that these conditions are not realistic for many real problems

» OLS conditions for optimality

» Relations between features and targets are really linear
» All necessary features are present, and all present features are necessary



OLS KNOWN WEAKNESS

 MSE Is known to be sensitive to outliers

@ ——— Qutlier

Least absolute error
regression line




NON-LINEAR REGRESSION:
DECISION TREE REGRESSION



DECISION TREE

* Decision tree Is a simple yet powerful way to do machine
learning.

- Meta-algorithm:
» Recursively split the data In 2 groups of items, based on a chosen attribute, so
that elements in the same group have as close target values as possible

» Predict that the value of a new item Is the same as those of the group It
belongs to.



FEd Using

» MSE as split criteria
» | Level of splitting

550000 -
500000 -
450000 -
400000 -
350000 A
300000 A

250000 -

DECISION TREE

Surface <= 46.808
mse = 3033850818.284
samples = 100
value = 378067.396

Tru'e/

mse = 988751194.246
samples = 57
value = 339940.668

%

100

150

200

250

False

MSE 1106922922.7787206
RMSE 33270.45119589935
MAE 27836.40899704275
R2 0.6351425995939648



DECISION TREE

FEd Using
» MSE as split criteria
» 2 Level of splitting

mse = 405456246.696
samples = 28
value = 312637.559

Surface <= 46.808
mse = 3033850818.284
samples = 100
value = 378067.396

Tm:/

V:alsc

Surface <=304
mse = 988751194.246
samples = 57
value = 339940.668

Surface <= 76.787
mse = 1263569167.578
samples = 43
value = 428607.477

;

'

mse = 137243148 231
samples = 29
value = 36630229

mse = 149708036.458
samples = 28
value = 406368.063
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MSE 299670892.805488

RMSE 17311.00496232059
MAE 13262.652619929546
R2 0.9012242490634346



DECISION TREE

FEd Using

» MSE as split criteria

» 3 Level of splitting

True

Surface <=30.4
mse = 988751194.246
samples = 57
value = 339940.668

Surface <= 46.808
mse = 3033850818.284
samples = 100
value = 378067.396

A

mse = 1263569167.578

Surface <= 76.787

samples = 43

value = 428607.477

/

S

Surface <= 25.307 Surface <= 37475 Surface <= 55.764 Surface <= 131.484
mse = 405456246.696 mse = 137243148 231 mse = 149708036.458 mse = 696162536.901
samples = 28 samples = 29 samples = 28 samples = 15
value = 312637.559 value = 36630229 value = 406368.063 value = 470121.048
2N /o N\ |
mse = 219625259472 mse = 33802931.006 mse = 44008050.012 mse = 43295262.631 mse =42613531.523 mse = 65027801.889 mse = 99073961.739
samples = 15 samples = 13 samples =9 samples = 20 samples = 10 samples = 18 samples = 11
value = 297280.968 value = 330356.703 value = 351870.329 value = 372796.673 value = 393451.655 value = 413543.846 value = 456212.584

550000 -
xl
500000 - K1
ot ’
450000 aee
-
@’
400000 - o
a2
350000 &
&
a8
300000 - F
o
ful
250000 i ‘ Ll | L T L}
50 100 150 200 250

MSE 90552465.56733872
RMSE 9515.905924678886
MAE 7434.910779663157
R2 0.9701526307682573




DECISION TREE

W EE- - plilcritenia =E. 2! :
» |0 Level of splitting
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AC HINE LEARNING: SOV



OR IS
OVERHT TING...



EWVERKH | SIGN: EMPIRICHES

B 2 50

Training steps/model complexity



AVOIDING OVERFIT

* [he most important rule of machine learning
» And essential part of the scientific process

* Predicting what you already know Is cheating

» Even If you genuinely try not to cheat, you can cheat unintentionally

» Experimental scientific experiments are done in double blind:
- Neither the tested subject nor the experimenter know the placebo from real pill

* You must hide a test set, that you will never use when
learning, and that you will only use once, for evaluating.



AVOIDING OVERFIT

* When your data Is ready, before any learning, split your data
into:
» A training set
» A test set

* YOu can train as many methods with as many parameters as
you want on the training set.

* Only when all your models are trained, you can evaluate them
Elilne test set

» YOu can never, ever reuse that (exactly same) test set.



AVOIDING OVERFIT

Decision Tree, levels=10

MSE 0.0
Scores on A
: MAE 0.0
Tram Set R2 1.0
MSE 60522590.58807978
Scores on RHSE 7770 626235510105
MAE 6427.594619486819
TGSJE Set R2 0.9689849224913336

Decision Iree, levels=5

MSE 9675372.95170697
RMSE 3110.5261535159884
MAE 2364.5552169188454
R2 0.9968108606746918

MSE 47482936.48734139
RMSE 6890.786347532579
MAE 5748.307144423111
R2 0.9756671526915104



TRAIN/VALIDATION/TEST

B Gliie cases, You need to see the results on the tesiseints

know how to improve your prediction
» Exihow many levels in my decision tree! The right level is the one with the best
i litston the test set.

» More generally: hyperbarameter tuning.

- It my learning method has parameters, how to fix those parameters! (Coefficient of learning,
number of layers in deep NN, etc.)

g Solution:

» Use a validation set for intermediary steps (hidden like test set, but not for
final evaluation)
- You can do whatever you want with your validation set, it's part of your training process
» Keep a test set, that you will use only once at the end




TRAIN/TES T SFERE

* What size should your test set have!?
» No good answer. 80% Train, 20% lest is often a default choice

* Rule of thumb:

» You need enough data for training. If your problem is simple (few features...)
and you have many examples, then a random sample of 5% of it can be enough

* Problem Is If data Is scarce

= @ o555 validation



CROSS VALIDATION

- General idea: From your data, create |0 datasets, each using
90% of the data as train and 10% as test/validation

KFold

mm Testing set
B Training set

w N = O



CROSS VALIDATION

» Usage |:small dataset

» T you have too few data to put 33% aside for a test set:

- Use only, e.g, 0% for the test set
- But creates |0 train/test sets, each with different test sets
- Then, compute the average scores over the |0 sets

» Usage 2: Robustness and variability

» By running several times the test, you can check that you were not just “lucky”
with your test set

» You can report the variance of the score

» Usage 3: as validation set



CROSS VALIDATION

All Data

Training data Test data

Foldl || Fold2 || Fold3 | Fold4 || Fold5 | )

Splitl | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

> Finding Parameters

Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split4 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

SplitS | Fold 1 Fold 2 Fold 3 Fold 4 Fold5 |/

Final evaluation = Test data




CROSS VALIDATION

KFold

o Testing set
B Training set
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CROSS VALIDATION

KFold

o Testing set
B Training set
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STRATIFIED K-FOLD

* Variant in which you take into account the target classes

» In a classification problem, your test set might have more elements of one class,
just by chance
- In particular if strong class imbalance
- Think of a rare class, that might not be present in a random test set



CV iteration

CROSS VALIDATION

StratifiedKFold

o Testing set

0 Bl Training set
1
2
3
class - ]
group - [ D 1 |
0 2'0 4'0 6'0 8'0 100

Sample index



CROSS VALIDATION

LOOCV: Leave One Out Cross Validation

Total Data

A
\/

Iteration 1/N

Iteration 2/N

Iteration 3/N

Iteration 4/N

dataaspirant.com

Iteration N/N




FIGHTING OVERFT
BACK TO THE METHOD




FIGHTING OVERFT

* Implicit [imit to overfit:

» Because a method has a limited power of expression, it cannot overfit “too
much’.
- Inivial solution: each point has its own prediction. No generalization

» =>A linear regression method cannot overtit to the trivial solution, unlike
decision tree
- Unless there are enough variables. ..

* Explicrt limit to overfit:

» The method Is not limited in 1ts power of expression, but contains a safeguard
against overfit (Regularization)



Train

Test

FIGHTING OVERFT

650000
600000
550000
500000 1
450000
400000 -
350000
300000 - :."2:

250000 1_°*

50 100 150 200

MSE 474131230.6072998
RMSE 21774.554659218633
MAE 16958.426496791166
R2 0.8437196622358905

MSE 297361867.9984524
RMSE 17244.18359907051
MAE 14666.202886910516
R2 0.8476155548782759

550000 A
500000 -
450000 -
400000 -
350000 -
300000 -

250000 L °

50 100 150 200 250

MSE 9675372.95170697
RMSE 3110.5261535159884
MAE 2364.5552169188454
R2 0.9968108606/46918

MSE 47482936.48734139
RMSE 6890.786347532579
MAE 5748.307144423111
R2 0.97/56671526915104




FIGHTING OVERFT

- Avoiding overfit In decision trees: Pruning strategies

One way to see: Artificially limit the expressivity of the model
| ) Limit the number of levels (Simple but naive)
2) Limit the number of leaves

- =>5plit nodes in priority where it improves the most
3) Limit the size of leaves
- => Explicitly forbids the naive solution

v

v

v

Wi

* Hyperparameter tuning/optimization

» Typical approach: Grid search.
» Fix a set of possible parameters. Test all possibilities on a validation test



GRID SEARCH
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More clever methods exist: Bayesian optimization, etc.



NOTE: GENERALIZATION

* A very important notion in machine learning is Generalization

» Can we extract generic principles underlying our data’
» Can we generalize our observations to unseen cases!

* Linear regression can predict an unseen value, while decision
iieElEdNNOL.

» Alcohol In wine example:
- we know how alcohol degree in wines correlates with summer temperatures today

- Can we make predictions for the next 50 years, when we will encounter never seen summer
temperatures ! (Linear regression: yes. Decision tree: no)



