Data description

Describing a dataset

We start the process from a dataset. The first step is to describe this dataset to better
understand its nature and its content. For now, let's consider a dataset of a tabular nature.

» Lines correspond to observations, samples, instances, records
» columns correspond to features, attributes, variables

Size of the dataset

First, you can describe the size of your dataset:

e Number of observations
 Number of features

Why?

« If the dataset is very large, you might have to work on a sample first, and use specific
big data tools.

« If the data has a large number of features proportionally to the number of observations,
or more generally, a small number of observations, you will need to be very careful
about using statistical testing to validate any observation you make. What you observe
might appear by chance. See later discussions about statistical tests, spurious
correlations, etc.

Nature of variables

Variables can be of different natures. Here, we consider only two possible categories:

» Numerical variables are composed of numbers (integers, floats, etc.) on which we can
perform mathematical operations.
Categorical variables are composed of a finite set of possible values, without order

between them

WARNING: Be careful about the distinction between the two. A categorical variable can
be represented by numbers. For instance, a variable can encode a class



("man"/"woman"/"other"), but for technical reasons these classes can be encoded as
1/2/3. Manipulating this variable as a numerical one is a MAJOR MISTAKE. Indeed, if
you consider these values as numbers, it would mean that mathematically,
man<woman<other, or woman=2*man. This is obviously wrong, and giving this
information to a data mining algorithm will necessarily lead to errors in the result

All numerical variables are not equal

We can distinguish at least three different situations with numerical variables:

» Ratio variables correspond to the most permissive numerical values. You can perform
operations such as addition, multiplication, compute distances between values, etc.
Simple examples: age, size, or amount of money. If a person is 20 year old, it is twice
as old as someone who is 10 year old. There is the same duration between them as
between two people being 80 and 90 year olds (10 years difference).

 Interval variables are more restricted: you can perform additions/substractions, but no
multiplications/divisions. This is usually because these values do not have a meaningful
zero value. For instance, temperature in Celsius/Fahrenheit, years, etc.

o There is the same temperature difference between 15°/20° and between 30°/35°
(5°).
o But it does not make sense to say that 20° is twice 10°.

» Spherical and other non-standard variables, in which even the addition/subtraction
does not make sense. Typical examples are some temporal or geographical variables:
hours of the day (0-24), latitude/longitude... The difference between 23h00 and 02h00 is
not 21, but 3...

WARNING: Using interval variables as if they were Ratio can also lead to absurd
results. In principle, it is forbidden to apply a log transformation to an interval value,
because logarithms transform additions into multiplications. Luckily, most Data Mining
methods rely only on distances/differences between values, and Intervals can be used.

Encoding categorical variables

Categorical variables cannot be represented by numerical values. So, how to include them in
a data mining analysis? You can use one-hot encoding, also called dummy variable
encoding. This transformation means that each possible value is represented as a new
column, and a boolean value at 1 in the corresponding column represents the value. Be
careful however that many data mining methods should not be applied with dummy
variables, or other boolean columns. This is because these methods treat columns as Ratio
numerical values, computing average and other mathematical operations that do not work
with booleans.



What do do with Intervals?

In some cases, it is possible to transform them into Ratio variables. For instance, if you need
to apply log transform to a temperature, you can first convert it into Kelvins. But for most of
Data Mining, Intervals are fine.

What to do with dates/special values

When dates are provided as Date object, or several columns DD/MM/YYYY, the solution
usually consists in converting them into a timestamp, i.e., number of seconds since an
arbitrary starting dates. This also solve problems with different time zones, time change twice
a year, etc.

Missing values, errors in values

Before using your dataset, you should always check that the values you will manipulate are
correct. You should check for:

» Missing values. It is very common to have missing values, so you should be aware of
how much you have, and how you want to deal with them. Most data mining methods
require to have no missing values. If you have few of them, you can decide to discard
the rows/columns in which they appear. If you have many, you might have to use
imputation, or use specific methods working with missing values. These are not covered
in this class.

» Incorrect values are very common too. For instance, a value can be wrong because of
a bug, of a dysfunctional sensor, etc. A typical case you need to look for are zeros
coding for missing values. For instance, if a sensor measuring temperatures stop
working during a period, the absence of values might be encoded as zeros. If you do
not realize it, all your subsequent analysis will be wrong (average temperature,
correlations with other variables, etc.)

To sum up

When first encountering a dataset on which you want to perform Data Mining, you should

» Describe its size, to know how to handle it

» Check if all features are encoded correctly, if they can be used safely in any Data
Mining method or not, and if necessary, transform them so as to be able to manipulate
them.

» You should also check for missing values and incorrect values.

Describing variables



The next step of your analysis consists of describing each variable quantitatively. For this, we
usually use simple descriptive statistics.

Mean, Median

Used to compare magnitude.

WARNING. These values are not always representative of your data. They are mostly
useful if the distribution follows a normal distribution (see below)

Variance, Standard deviation

Variance and Standard deviation are used to measure the dispersion/spread of a variable.
For instance, imagine two possible ways to go to work in the morning, e.g., car or subway.
The car trips have a high variance: if no congestion, it is very fast, but with congestion, it can
be very slow. The subway has a low variance: it will always take roughly the same time.

The variance is a central tool in statistics, often used in the rest of this class.

The variance is defined as

with 7 the number of observations, x; observation 7, and x the average of x

Said differently, the Variance is the average of the squared differences between each
observation and the mean.

The standard deviation (std) is simply the square root of the Variance

=10’

WARNING. The Variance is a squared value, so cannot be interpreted directly. The
standard deviation is in the same unit as the original variable, so can be understood.
But it can be interpreted easily only if the varaible follows a normal distribution. In that
case, and only in that case, we can say that: 65% of the data is within 1 std of the
mean, 95% is within 2 std...

Mean Absolute Deviation (MAD)

If one wants to directly interpret the spread, a more interpretable score is the Mean Absolute
Deviation
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with |x| the absolue value of x

Statistical distributions

Describing the values in a variable with single value indicators such as mean, variance or
MAD is often misleading and insufficient. To really understand a variable, one needs to plot
the distribution of the values of this variable. Variables encountered in real datasets can
follow complex distributions, but they tend to belong to two main families:

» Bell-shaped, or normal distribution.
» Long tailed, Heterogeneous or Power Law distributions.

Many descriptors such as mean/variance, and many data mining tools make the assumption
that variables are normally distributed. For instance, the mean and the variance of a power
law distribution are very poor descriptors.

WARNING: Normal and Power law distributions are theoretical distributions, defined
mathematically. Real variables, in general cases, do not follow any theoretical
distributions, because they depend on constraints of the real world. However, many
variables can be roughly approximated by a theoretical distribution.

Interactions between variables

In the previous section, we saw how to describe a single variable. When searching to
understand a dataset, we are often interested in understanding the relation between
variables. For instance, in a dataset of countries, is there a relation between the country's
population and its wealth? between the level of education and the birth rate?

Correlation coefficients

The most common way to assess a relation between variables is Pearson's correlation
coefficient. It measures the linear correlation between two variables. It is computed from
the Covariance Matrix. The Covariance between two variables is defined in a manner similar
to the variance:
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The variance is not directly interpretable because its magnitude depends on the magnitude



of variables x and y. Only the sign can be interpreted: it is positive if observations having a
high value of x tend to also have high values of y. In this context, high is defined
comparatively to the mean value of each variable.

Pearson's correlation coefficient

Pearson correlation coefficient (px y) is simply defined as the covariance normalized by the
magnitudes (using the Variance), so that py y € [—1, 1]:
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» px.y=+1 means a perfect positive linear correlation between the two variables
» px.y=-1means a perfect negative linear correlation between the two variables
* px.y=0 means that there is linear correlation between the variables.

WARNING: Une valeur de zéro ou proche de zéro ne veut pas forcément dire que les
deux variables ne sont pas liées. Elles peuvent I'étre de maniére non-linéaire.

WARNING: Corrélation n'est pas causation: ce n'est pas parce que deux variables sont
corrélées que I'une a forcément un effet sur l'autre. Les deux variables peuvent évoluer
dans la méme direction pour une raison commune, par exemple (la taille et le poids
des enfants sont corréllés, car plus un enfant est grand, plus il pése lourd. Mais cela ne
veut pas dire que les enfant les plus grands sont en surpoids, évidemment. Les deux
variables dépendent d'une autre variable non prise en compte, I'age.

Spearman's correlation coefficient

Pearson's cc measures the linear correlation. Spearman's correlation coefficient measures
non-linear correlation by ignoring the exact values of variables, but considering only their
ranks. i.e., for each variable, the lowest value is replaced by 1, the second lowest by 2, etc.
until the largest of the n observations is replaced by n.

Spearman's coefficient is then computed as the Pearson's correlation coefficient between the
ranks of the values

O(R(X),R(Y))
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with R the rank function.

NOTE: Another way of computing Pearson's correlation coefficient is to compute the
variance of standardized variables. By definition, standardized variables have a
variance of 1, thus making normalization by the variance unnecessary.



Statistical significance

When obtaining a value describing a dataset, an important question is often "Is this result
reliable?" Mathematically, the question is "Is this result statistically significant?". Imagine that
you toss a coin 10 times and obtain 7 tails. You want to know how likely it is that the coin is
fair given this result. Is it normal to obtain 7 times tails? The usual way to perform this kind of
test is to use a p-value. A p-value is a value between 0 and 1. It can be understood as the
probability of observing a value as exceptional as the one you actually observed.

Analytical, parametric p-values

A first way to compute p-values is to use an exact analytical solution based on a simple
statistical model (parametric) of the problem. Let's take as an example the coin toss. We
know that theoretically, if the coin is fair, the number of observations of tails can be modeled
by a Binomial distribution. The probability of obtaining 7 tails for 10 tosses is then
computed as p = Pr(X > 7) with X ~ Binom(10, 0.5) The resultis 0.172, i.e., there is
about a 17% chance of observing 7 tails or more with 10 tosses with a fair coin.

A similar method allows us to compute a p-value for the correlation coefficient. It answers the
question: What is the probability of obtaining a correlation score at least as extreme as the
one we got by pure chance, given the number of observations and some model
assumptions? Note that such tests require making assumptions about the variables: for the
value to be exact, they must be normally distributed, and their relation must follow some
good properties (bivariate normal). The details of the computation are beyond the scope of
this class, but implementations of such p-values are easily found in common stat libraries.

Simulation-based (Monte Carlo, Model-based) p-values

A p-value is really a measure of how likely it is to obtain a given result in a given experiment.
It can therefore be computed experimentally by performing simulations. The first approach is
still model-based: For instance, you can assume the distribution of variables X and Y, either
assuming normality (using the observed mean and variance if variables are not normalized),
or using an empirically observed distribution. Then, we generate data from these synthetic
distributions, and compute the correlation coefficient for each simulation. Finally, we just
have to count how many of the generated data have a value as extreme as the one
observed. The higher the number of simulations, the more reliable the result. Note that an
advantage of this approach is that the same method can be used for any score (e.g.,
Pearson/Spearman CC)

Permutation-based p-values

Finally, a last option consists of using no model at all, and simply using permutations of the



data. We are still performing simulations and counting the number of situations with values
exeeding the observed one. But now, for the correlation coefficient, we simply fix X, and
randomly shuffle Y, keeping the exact values, but making the correlation random. Note that
this permutation approach works for correlation coefficient, but not for the coin toss, for
instance, unlike the model-based simulations.

NOTE: A p-value never gives a definite answer. Here, you cannot be certain whether
the coin is fair or not. In science, you usually define your threshold before doing the
test, to avoid being biased. Typical thresholds in biology or medicine are 0.1 or 0.05.

With a threshold of 0.1, you would reject the null(reference) hypotheses that the coin is
biased. Even though there is only a 17% chance to get this result by chance, 17% is still too
likely to conclude. After all, if you use a fair coin and repeat this experiment several times,
you will obtain this result every 6 experiments.



