
MATRIX-FACTORIZATION
RECOMMENDER-SYSTEMS

BI-CLUSTERING

RECOMMENDER SYSTEMS

• Many commercial/industrial applications

• Given a user and its past interaction with items, recommend
them some new items
‣ Movies, Music, Book, Video Games, etc.
‣ Products on Amazon or any shop with past information
‣ Posts/contents on Twitter, Facebook, Youtube, news media
‣ …

RECOMMENDER SYSTEMS

• Intuition: How would you proceed to make recommendations?
‣ e.g., Product to users
‣ You have product descriptions, user descriptions, past user-product interactions

• What about a new user? A new product?
‣ “Cold start” problem

CONTENT-BASED
• Classic approach: Content-based recommendation

‣ We describe all our items using features
- Movies genre, length, age rate, topics…
- Object categories, price range, etc.

‣ We recommend to users items having similar features to the ones they like
- For instance, using supervised machine learning (classification or score regression)

• Often disappointing in practice
‣ Finding useful descriptors is usually very hard

- What makes you like/dislike a music/movie is more than a list of keywords
- Somewhat arbitrary (is movie M a comedy? Book B a child book? 2 people might disagree)

‣ Very costly on large catalogs
- Impossible for social media, but also Amazon, YouTube..

COLLABORATIVE FILTERING

• Solution: Collaborative filtering

• Principle:
‣ To evaluate if two items are similar, instead of comparing manually chosen

descriptors (genre, etc.), we compare the users who have interacted with them
‣ =>Users themselves become the features

• The definition of similarity emerges from the
collaborative efforts of all users

• Tell me what you like, I’ll tell you who you are

COLLABORATIVE FILTERING

DATA

• We model observed data as a matrix of size
‣ users
‣ items

• =user/item interaction
‣ Buy, watch, clic, like, vote, etc.

• Users could be treated as any feature, but they have some
specificities
‣ Values are sparse:

- Missing values in all rows and columns (no user rates all items, no item is rated by every
user)

‣ Both Users or Items can be used as variables or observations (rows/columns)

U × I
U
I

X(u, i)

DATA COMPLEXITY

• Data form:
‣ Binary vote

- 1 and 0 are both reliable (rare)
‣ Like, Heart, Watched, Bought, Listened, etc.

- 1 is reliable information, but 0 and nan are not differentiable.
‣ Note (e.g., 1 to 5 stars, etc.)

- Often imbalanced between 4/5 (frequent), 1/2 (less frequent)
- Missing values and 0 are correlated (people rate what they watch, and watch what they like)

DATA COMPLEXITY
• Users can have different labeling standards

‣ “Good” for one might correspond to “excellent” for another
- Some users put a like/share everything they find above-average
- Other users will only like/share what they find exceptional
- Same for scores: some users never give maximal notes, while others use only the maximal

note

• Normalizing by users?
‣ We don’t care if the score is good, we consider if it is higher or lower

compared with other scores from the same user

• Normalizing by item?
‣ We don’t care anymore if the score is good, we want to know if it is better

than for other users

USER/ITEM BIAS TERM
Normalizing both aspect together

BIAS TERM
• We estimate the baseline score for from values and

- captures the tendency of to give high or low marks
- captures the tendency of to have low or high marks
- : rate given by to
- Minimize reconstructing error

‣

- : average note (all users, all items)
‣ cannot capture how much a particular user likes a particular movie.

- Captures only tendencies of users/ of items

• Solved by gradient descent

(u, i) bu
bi

bu u
bi i
r(u, i) u i

∑
rui

(rui − (μ + bu + bi))2

μ
b

BIAS TERM

• In practice, add regularization terms
-

‣ Regularization tends to impose low .

∑
rui

(rui − (μ + bu + bi))2 + λ (b2
u + b2

i) .

b

USER-BASED KNN

USER-BASED KNN

• KNN: K-Nearest-Neighbors
‣ Simple yet powerful method popular in classification task

- 1)Find k most similar items (neighbors) to item i.
- 2)Each neighbor “vote” for its target => average/mode of targets of neighbors

• Application to user-based collaborative filtering
‣ 1) Find k most similar users (neighbors)
‣ 2) Each neighbor “vote” for the products they liked

- Average notes
- Count of 1 for binary data (like, etc.)

‣ Usually, votes weighted by similarity to the original user

USER-BASED KNN

2
2
-1

-1

Similarity to E

USER-BASED KNN

2
2
-1

-1

Similarity to E

(2*-1)/2=-1

SIMILARITY
• How to compute the similarity between users?

‣ Euclidean distance => No, because of sparsity (most values are 0)
- Think of a user with few likes {0,1}. They are very distant from users having many like, since

each difference adds distance.
‣ Number of similar votes only? =

- (=>vector of all votes of)
- Now users with many likes are similar to everyone

• Solution:

‣ (Binary & Notes) => Cosine Similarity

‣ (Binary) Jaccard Similarity =>

‣ (Notes) MSD=>Mean Squared Difference when both notes present

Ru ⋅ Rv
Ru u

Ru ⋅ Rv

|Ru | |Ru |
Ru ⋅ Rv

|Ru | + |Ru | − Ru ⋅ Rv

ITEM-BASED
COLLABORATIVE FILTERING

ITEM-BASED

• User-based collaborative filtering has weaknesses in practice
‣ Scalability: Users change a lot =>Need to recompute KNN on the whole

database very frequently
‣ Users with little info will have neighbors with little info too

- Imagine you liked movies M1 and M2. The 20 most similar users will like exactly M1 and M2,
maybe 1 movie more.

- =>We will learn based on few info

• => Move to Item-based Collaborative filtering
‣ Compute similarity between items, based on votes
‣ Then compute

ITEM-BASED

• 1)Compute similarity between items, based on votes

• 2) Then compute for each user, the most similar items
‣ Based on the items they liked

ITEM-BASED

-1 -3 2

ITEM-BASED

-1 -3 2

=(1*(-1)+1*(-3)-1*2)/3=>-2

ITEM-BASED

• Original Amazon patented method introduced in 1998

• Strengths
‣ Distances between items can be precomputed at fix interval, do not change

too quickly
‣ Distances between items robust, lot of information (appart from new items)

MATRIX FACTORIZATION
COLLABORATIVE FILTERING

LATENT FACTORS
Matrix factorization in dense matrices

(i.e., mostly non-zero values)

LATENT FACTORS

• A popular problem in Data Mining

• Given two types of data
‣ Locations and Dates (T°, mortality in cities along week/year…)
‣ Terms and Documents (Topic-modelling)
‣ …

• Unsupervised task
‣ How to best reconstruct the data
‣ By assigning a “latent variable” to each item

MATRIX FACTORIZATION
• Matrix Factorization

‣ We start with an original matrix , typically item/user matrix
‣ We search for 2 matrices , , such as to minimize a cost function

- With a matrix multiplication
‣ Or with the SVD technique, 3 matrices, , with giving the relative

importance of factors.

• If the dimension of is , dimensions of
‣

‣

- With a parameter, corresponding to a number of latent variables/embedding
dimensions

• Same principle as PCA dimensionality reduction

A
U V L(A, UV)

UV
UΣV Σ

A X × Y
U = > X × D
V = > D × Y

D

MATRIX FACTORIZATION

• Dimensions can be understood as latent variables, i.e., features
representing some semantic notion

• For instance, in movies, latent variables could capture
‣ Horror-ness, comedy-ness, adult-ness, etc.
‣ Each user has a score in each of these features (enjoy horror=1, comedy=0.2)
‣ Each movie too (is horror=1, is comedy=1.5)
‣ =>(user, movie)=>combination of match in each category

NETFLIX PRIZE

• Worldwide competition to improve Netflix recommendation
‣ Cash prize, 1 Million $
‣ 2006 to 2009 (Objective of reducing RMSE on scores by 10% compared with

Netflix own method)

• Winning method: Stacking of multiple recommendation
systems

• But the single most successful approach: Matrix decomposition
‣ 2 matrices only, special treatment of sparse matrices

https://intoli.com/blog/pca-and-svd/

MATRIX FACTORIZATION

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

2 latent variables

MATRIX FACTORIZATION

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Vector representing user 2, u2
Vector representing item 3, i3
Multiply the two vectors to reconstruct estimated

value(u2,i3)

OBJECTIVE FUNCTION

• The classic SVD would correspond
to using as a loss the mean-squared
error
‣ Having 0 where we have no data

(like/rating)

OBJECTIVE FUNCTION

• The recommendation based Matrix
Factorization has an adapted loss,
‣ Computed only on non-zero values

‣ Solve sparsity, i.e., missing values

OBJECTIVE FUNCTION

A variant has a parameter to combine both
(Weighted Matrix Factorization)

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

OPTIMIZATION

• To find the two matrices, we use a greedy approach
‣ Typically the Weighted Alternating Least Square (WALS)

- 1)Initialize values at random
- 2)Fix and solve for
- 3)Fix and solve for
- Repeat 2 and 3 until convergence

‣ Solving in 2 and 3 is equivalent to doing linear regression for each component

U V
V U

OPTIMIZATION

p*2 = 3

Arbitrary initialization

MF + REGULARIZATION

• As with many machine learning tasks, we can introduce
regularization to avoid overfitting
‣ Due to the large number of parameters, regularization is important

• The objective to solve becomes:

‣

- are latent vectors,
‣ controls the strength of the regularization

- Tries to minimize information in the vectors, avoid overfit

∑
rui∈obs

(rui − ̂rui)2 + λ (| |qi | |2 + | |pu | |2)
qi, pu ̂rui = qipT

u

λ

MF + BASELINE

• As mentioned before, it is also important to take into account
the variability of users and of items
‣ We want to predict what cannot be simply predicted by

- Movies being good/bad
- Each actor tendency to give good/bad scores

• The objective to solve becomes:

‣

‣ and = user baselines
‣

∑
rui∈obs

(rui − ̂rui)2 + λ (b2
i + b2

u + | |qi | |2 + | |pu | |2)
bi bu
̂rui = qipT

u + μ + bi + bu

MF RECOMMENDATION

• From the two partial matrices, we
can compute any value by
multiplying the corresponding
vectors

• Recommending for a user
consists in picking
‣ In the user row
‣ The highest computed values

NETFLIX PRIZE

• A few other elements were taken into account in the Netflix
Prize winning strategy
‣ Temporal aspects (how long since this product was rated…)
‣ Sequential aspects

- Watch episode1 then episode 2. Contrary unlikely.

• Fine parameter tuning, clever stacking…

EVALUATION OF
RECOMMENDER SYSTEMS

EVALUATION

• Recommendation evaluation use similar quality scores as
supervised machine learning evaluation
‣ RMSE, Precision@k, AUC, etc.

EVALUATION
• In practice, two ways to evaluate, hiding users or hiding

pairs(u,i)

• Hiding pairs (u,i)
‣ Hide random (u,i) pairs, ensuring a minimal number of visible ratings per user

and items
‣ Evaluate the recommendation on those removed pairs.

• Hiding users
- If possible, even keep the most recent users hidden: prediction at time t

‣ 1)We train with full data on a fraction of users
‣ 2)We validate with test users, considered “new”

•

OTHER RECOMMENDATION
QUALITY CRITERIA

• Diversity of recommendation
‣ e.g., maximize average cosine distance between 2 items recommended to a

same user (among top-5)

• Coverage
‣ e.g., fraction of all items recommended at least once…

• Personalization
‣ e.g., maximize average cosine distance between recommendations made to

different users

MF VARIANT: NMF
Non-negative Matrix Factorization

NMF

• A strength of Matrix Factorization is that it produces latent
variables which, in theory, can be interpretable.

• A weakness of classic MF is that these variables can cancel
each other, if one is positive and the other negative

• In NMF (Non-negative MF), we impose that all variables values
must be positive. Of course, the Matrix to decompose must
be positive too.
‣ Imposes additive combinations

NMF

BICYCLE SHARING SYSTEMS

Docking stations Bicycle trips

Red: empty

Green: full

DATA

Part Dieu Tête d’or Guillotière

Cumulated

t1 t2 t3 t4 t5 t6 … t168

e1
e2
e3
…e4
……

Hours of the typical week

Entities
(station)

0

5000

10000

15000

20000

25000

30000

35000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

0

5000

10000

15000

20000

25000

30000

35000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

0

5000

10000

15000

20000

25000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

“Commercial” ? “Work” ?

“Bars-Restaurants” ? “Leisure” ?

…

Automatically discovered patterns

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

“Leisure” ?
Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

For each pattern, for each station,
we have a value

=>Total trips due to this pattern

Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

Main city Mall

Main commercial
street

(a) TPU1 (b) TPU2

Main nightlife
districts

(c) TPU3

Main train station

(d) TPU4

Main campuses
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

CO-CLUSTERING
Or Bi-clustering, two-mode clustering, block clustering

CO-CLUSTERING
• Objective: Find dense submatrices in a matrix

• Groups of rows that are preferentially related to groups of
columns

CO-CLUSTERING
• Various algorithms exist, a simple one for sparse data consists

in optimizing a modified version of the modularity on the
bipartite graph (user-item)

•

‣ With the matrix to co-cluster, dimension
‣ the weighted degree(strength) of
‣ =1 if belong to the same co-cluster
‣ sum of all values in the matrix

Q =
n

∑
i

d

∑
j

Aij −
kikj

|A |
δij

A n × d
ki i
δij i, j
|A |

https://dl.acm.org/doi/pdf/10.1145/2806416.2806639

CO-CLUSTERING

• Co-cluster make natural sense in user-item matrices
‣ Group of people who like the same type of products, and products liked by the

same people

• Co-clustering can be used to improve recommender systems
‣ To improve scalability, one can compute co-cluster first, and then use only

users/items in the same co-cluster for recommendation
‣ It can also improve precision: remove the effect of most popular items, that

tend to be recommended to everyone

