
MATRIX-FACTORIZATION
RECOMMENDER-SYSTEMS

BI-CLUSTERING



RECOMMENDER SYSTEMS

• Many commercial/industrial applications

• Given a user and its past interaction with items, recommend 
them some new items
‣ Movies, Music, Book, Video Games, etc.
‣ Products on Amazon or any shop with past information
‣ Posts/contents on Twitter, Facebook, Youtube, news media
‣ …



RECOMMENDER SYSTEMS

• Intuition: How would you proceed to make recommendations?
‣ e.g., Product to users
‣ You have product descriptions, user descriptions, past user-product interactions

• What about a new user? A new product?
‣ “Cold start” problem



CONTENT-BASED
• Classic approach: Content-based recommendation

‣ We describe all our items using features
- Movies genre, length, age rate, topics…
- Object categories, price range, etc.

‣ We recommend to users items having similar features to the ones they like
- For instance, using supervised machine learning (classification or score regression)

• Often disappointing in practice
‣ Finding useful descriptors is usually very hard

- What makes you like/dislike a music/movie is more than a list of keywords
- Somewhat arbitrary (is movie M a comedy? Book B a child book? 2 people might disagree)

‣ Very costly on large catalogs
- Impossible for social media, but also Amazon, YouTube..



COLLABORATIVE FILTERING

• Solution: Collaborative filtering

• Principle:
‣ To evaluate if two items are similar, instead of comparing manually chosen 

descriptors (genre, etc.), we compare the users who have interacted with them
‣ =>Users themselves become the features

• The definition of similarity emerges from the 
collaborative efforts of all users

• Tell me what you like, I’ll tell you who you are



COLLABORATIVE FILTERING



DATA

• We model observed data as a matrix of size 
‣  users
‣  items

• =user/item interaction
‣ Buy, watch, clic, like, vote, etc.

• Users could be treated as any feature, but they have some 
specificities
‣ Values are sparse: 

- Missing values in all rows and columns (no user rates all items, no item is rated by every 
user)

‣ Both Users or Items can be used as variables or observations (rows/columns)

U × I
U
I

X(u, i)



DATA COMPLEXITY

• Data form:
‣ Binary vote

- 1 and 0 are both reliable (rare) 
‣ Like, Heart, Watched, Bought, Listened, etc.

- 1 is reliable information, but 0 and nan are not differentiable. 
‣ Note (e.g., 1 to 5 stars, etc.)

- Often imbalanced between 4/5 (frequent), 1/2 (less frequent)
- Missing values and 0 are correlated (people rate what they watch, and watch what they like)



DATA COMPLEXITY
• Users can have different labeling standards

‣ “Good” for one might correspond to “excellent” for another
- Some users put a like/share everything they find above-average
- Other users will only like/share what they find exceptional
- Same for scores: some users never give maximal notes, while others use only the maximal 

note

• Normalizing by users?
‣ We don’t care if the score is good, we consider if it is higher or lower 

compared with other scores from the same user

• Normalizing by item?
‣ We don’t care anymore if the score is good, we want to know if it is better 

than for other users



USER/ITEM BIAS TERM
Normalizing both aspect together



BIAS TERM
• We estimate the baseline score for  from values  and 

-  captures the tendency of  to give high or low marks
-  captures the tendency of  to have low or high marks
- : rate given by  to 
- Minimize reconstructing error 

‣

- : average note (all users, all items)
‣  cannot capture how much a particular user likes a particular movie.

- Captures only tendencies of users/ of items

• Solved by gradient descent

(u, i) bu
bi

bu u
bi i
r(u, i) u i

∑
rui

(rui − (μ + bu + bi))2

μ
b



BIAS TERM

• In practice, add regularization terms
-

‣ Regularization tends to impose low .

∑
rui

(rui − (μ + bu + bi))2 + λ (b2
u + b2

i ) .

b



USER-BASED KNN



USER-BASED KNN

• KNN: K-Nearest-Neighbors
‣ Simple yet powerful method popular in classification task

- 1)Find k most similar items (neighbors) to item i. 
- 2)Each neighbor “vote” for its target => average/mode of targets of neighbors

• Application to user-based collaborative filtering
‣ 1) Find k most similar users (neighbors)
‣ 2) Each neighbor “vote” for the products they liked

- Average notes
- Count of 1 for binary data (like, etc.)

‣ Usually, votes weighted by similarity to the original user



USER-BASED KNN
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USER-BASED KNN
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SIMILARITY
• How to compute the similarity between users?

‣ Euclidean distance => No, because of sparsity (most values are 0)
- Think of a user with few likes {0,1}. They are very distant from users having many like, since 

each difference adds distance.
‣ Number of similar votes only? =

- ( =>vector of all votes of )
- Now users with many likes are similar to everyone

• Solution:

‣ (Binary & Notes) => Cosine Similarity 

‣ (Binary) Jaccard Similarity  =>

‣ (Notes) MSD=>Mean Squared Difference when both notes present

Ru ⋅ Rv
Ru u

Ru ⋅ Rv

|Ru | |Ru |
Ru ⋅ Rv

|Ru | + |Ru | − Ru ⋅ Rv



ITEM-BASED 
COLLABORATIVE FILTERING



ITEM-BASED

• User-based collaborative filtering has weaknesses in practice
‣ Scalability: Users change a lot =>Need to recompute KNN on the whole 

database very frequently 
‣ Users with little info will have neighbors with little info too

- Imagine you liked movies M1 and M2. The 20 most similar users will like exactly M1 and M2, 
maybe 1 movie more. 

- =>We will learn based on few info

• => Move to Item-based Collaborative filtering
‣ Compute similarity between items, based on votes
‣ Then compute



ITEM-BASED

• 1)Compute similarity between items, based on votes

• 2) Then compute for each user, the most similar items
‣ Based on the items they liked



ITEM-BASED

-1 -3 2



ITEM-BASED

-1 -3 2

=(1*(-1)+1*(-3)-1*2 )/3=>-2



ITEM-BASED

• Original Amazon patented method introduced in 1998

• Strengths
‣ Distances between items can be precomputed at fix interval, do not change 

too quickly
‣ Distances between items robust, lot of information (appart from new items)



MATRIX FACTORIZATION 
COLLABORATIVE FILTERING



LATENT FACTORS
Matrix factorization in dense matrices  

(i.e., mostly non-zero values)



LATENT FACTORS

• A popular problem in Data Mining

• Given two types of data
‣ Locations and Dates (T°, mortality in cities along week/year…)
‣ Terms and Documents (Topic-modelling)
‣ …

• Unsupervised task
‣ How to best reconstruct the data
‣ By assigning a “latent variable” to each item



MATRIX FACTORIZATION
• Matrix Factorization

‣ We start with an original matrix , typically item/user matrix
‣ We search for 2 matrices , , such as to minimize a cost function 

- With  a matrix multiplication
‣ Or with the SVD technique, 3 matrices, , with  giving the relative 

importance of factors.

• If the dimension of  is , dimensions of
‣

‣

- With  a parameter, corresponding to a number of latent variables/embedding 
dimensions

• Same principle as PCA dimensionality reduction

A
U V L(A, UV )

UV
UΣV Σ

A X × Y
U = > X × D
V = > D × Y

D



MATRIX FACTORIZATION

• Dimensions can be understood as latent variables, i.e., features 
representing some semantic notion

• For instance, in movies, latent variables could capture
‣ Horror-ness, comedy-ness, adult-ness, etc.
‣ Each user has a score in each of these features (enjoy horror=1, comedy=0.2)
‣ Each movie too (is horror=1, is comedy=1.5)
‣ =>(user, movie)=>combination of match in each category



NETFLIX PRIZE

• Worldwide competition to improve Netflix recommendation
‣ Cash prize, 1 Million $
‣ 2006 to 2009 (Objective of reducing RMSE on scores by 10% compared with 

Netflix own method)

• Winning method: Stacking of multiple recommendation 
systems

• But the single most successful approach: Matrix decomposition
‣ 2 matrices only, special treatment of sparse matrices

https://intoli.com/blog/pca-and-svd/



MATRIX FACTORIZATION

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

2 latent variables



MATRIX FACTORIZATION

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Vector representing user 2, u2
Vector representing item 3, i3
Multiply the two vectors to reconstruct estimated 

value(u2,i3)



OBJECTIVE FUNCTION

• The classic SVD would correspond 
to using as a loss the mean-squared 
error
‣ Having 0 where we have no data 

(like/rating)



OBJECTIVE FUNCTION

• The recommendation based Matrix 
Factorization has an adapted loss, 
‣ Computed only on non-zero values

‣ Solve sparsity, i.e., missing values



OBJECTIVE FUNCTION

A variant has a parameter to combine both
(Weighted Matrix Factorization)

https://developers.google.com/machine-learning/recommendation/collaborative/matrix



OPTIMIZATION

• To find the two matrices, we use a greedy approach
‣ Typically the Weighted Alternating Least Square (WALS)

- 1)Initialize values at random
- 2)Fix  and solve for 
- 3)Fix  and solve for 
- Repeat 2 and 3 until convergence

‣ Solving in 2 and 3 is equivalent to doing linear regression for each component

U V
V U



OPTIMIZATION

p*2 = 3

Arbitrary initialization



MF + REGULARIZATION

• As with many machine learning tasks, we can introduce 
regularization to avoid overfitting
‣ Due to the large number of parameters, regularization is important

• The objective to solve becomes:

‣

-  are latent vectors, 
‣  controls the strength of the regularization

- Tries to minimize information in the vectors, avoid overfit

∑
rui∈obs

(rui − ̂rui)2 + λ ( | |qi | |2 + | |pu | |2 )
qi, pu ̂rui = qipT

u

λ



MF + BASELINE

• As mentioned before, it is also important to take into account 
the variability of users and of items
‣ We want to predict what cannot be simply predicted by 

- Movies being good/bad
- Each actor tendency to give good/bad scores

• The objective to solve becomes:

‣

‣  and  = user baselines
‣

∑
rui∈obs

(rui − ̂rui)2 + λ (b2
i + b2

u + | |qi | |2 + | |pu | |2 )
bi bu
̂rui = qipT

u + μ + bi + bu



MF RECOMMENDATION

• From the two partial matrices, we 
can compute any value by 
multiplying the corresponding 
vectors

• Recommending for a user 
consists in picking
‣ In the user row
‣ The highest computed values



NETFLIX PRIZE

• A few other elements were taken into account in the Netflix 
Prize winning strategy
‣ Temporal aspects (how long since this product was rated…)
‣ Sequential aspects 

- Watch episode1 then episode 2. Contrary unlikely.

• Fine parameter tuning, clever stacking…



EVALUATION OF 
RECOMMENDER SYSTEMS



EVALUATION

• Recommendation evaluation use similar quality scores as 
supervised machine learning evaluation
‣ RMSE, Precision@k, AUC, etc.



EVALUATION
• In practice, two ways to evaluate, hiding users or hiding 

pairs(u,i)

• Hiding pairs (u,i)
‣ Hide random (u,i) pairs, ensuring a minimal number of visible ratings per user 

and items
‣ Evaluate the recommendation on those removed pairs. 

• Hiding users 
- If possible, even keep the most recent users hidden: prediction at time t

‣ 1)We train with full data on a fraction of users
‣ 2)We validate with test users, considered “new”

•



OTHER RECOMMENDATION 
QUALITY CRITERIA

• Diversity of recommendation
‣ e.g., maximize average cosine distance between 2 items recommended to a 

same user (among top-5)

• Coverage
‣ e.g., fraction of all items recommended at least once…

• Personalization
‣ e.g., maximize average cosine distance between recommendations made to 

different users



MF VARIANT: NMF
Non-negative Matrix Factorization



NMF

• A strength of Matrix Factorization is that it produces latent 
variables which, in theory, can be interpretable.

• A weakness of classic MF is that these variables can cancel 
each other, if one is positive and the other negative

• In NMF (Non-negative MF), we impose that all variables values 
must be positive. Of course, the Matrix to decompose must 
be positive too.
‣ Imposes additive combinations



NMF



BICYCLE SHARING SYSTEMS

Docking stations Bicycle trips



Red: empty

Green: full

DATA



Part Dieu Tête d’or Guillotière

Cumulated



t1 t2 t3 t4 t5 t6 … t168

e1
e2
e3
…e4
……

Hours of the typical week

Entities
(station)



0

5000

10000

15000

20000

25000

30000

35000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

0

5000

10000

15000

20000

25000

30000

35000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

0

5000

10000

15000

20000

25000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

“Commercial” ? “Work” ?

“Bars-Restaurants” ? “Leisure” ?

…

Automatically discovered patterns



0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

MONDAY TUESDAY WEDNESDAY TURSDAY FRIDAY SATURDAY SUNDAY

“Leisure” ?
Main city Mall

Main commercial 
street

(a) TPU1 (b) TPU2

Main nightlife 
districts 

(c) TPU3

Main train station

(d) TPU4

Main campuses 
of universities

(e) TPU5 (f) TPU6

Fig. 2: Maps of the mean Normalized Temporal Profiles (mNTP) of each station for each TPU.

For each pattern, for each station, 
we have a value

=>Total trips due to this pattern
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CO-CLUSTERING
Or Bi-clustering, two-mode clustering, block clustering



CO-CLUSTERING
• Objective: Find dense submatrices in a matrix

• Groups of rows that are preferentially related to groups of 
columns



CO-CLUSTERING
• Various algorithms exist, a simple one for sparse data consists 

in optimizing a modified version of the modularity on the 
bipartite graph (user-item)

•

‣ With  the matrix to co-cluster, dimension 
‣  the weighted degree(strength) of 
‣ =1 if  belong to the same co-cluster
‣ sum of all values in the matrix

Q =
n

∑
i

d

∑
j

Aij −
kikj

|A |
δij

A n × d
ki i
δij i, j
|A |

https://dl.acm.org/doi/pdf/10.1145/2806416.2806639



CO-CLUSTERING

• Co-cluster make natural sense in user-item matrices
‣ Group of people who like the same type of products, and products liked by the 

same people

• Co-clustering can be used to improve recommender systems
‣ To improve scalability, one can compute co-cluster first, and then use only 

users/items in the same co-cluster for recommendation
‣ It can also improve precision: remove the effect of most popular items, that 

tend to be recommended to everyone


