
A thesis submitted in partial fulfilment of

Master 2 Computer science

Ecole Normale Superieure de Lyon

Defining an evaluation setting for
community detection in dynamic

graphs

Abstract

Temporal networks offer valuable insights into dynamic complex systems, capturing
the evolving nature of social, biological, and technological interactions. Community struc-
ture is a critical feature of real networks, revealing the internal organization of nodes. Dy-
namic community detection algorithms uncover strongly connected node groups, unveiling
hidden temporal patterns and community dynamics in temporal networks. Despite exist-
ing algorithms, evaluating their performance remains an open issue. A well-established
method is to use tests that rely on synthetic graphs. However, such a benchmark does
not exist for dynamic graphs with instantaneous edges and continuous time domains. To
address this issue, we will introduce a novel benchmark with predefined communities,
representing temporal networks with these properties. Additionally, we propose the Mo-
saic scoring function to evaluate partitions quantitatively to overcome the lack of quality
functions. We explore the scoring function’s behavior on the benchmark graphs to assess
its capabilities and limitations. This work contributes to the improved understanding and
evaluation of community detection algorithms in dynamic graphs.

Author:
Yasaman(Yas) Asgari

Research Supervisors:
Pierre Borgnat

Remy Cazabet

Date: 06/28/2023

Acknowledgments

I would like to express my heartfelt appreciation to Rémy Cazabet and Pierre Borgnat for their
guidance and supervision throughout my six-month master’s thesis. The introduction to the
captivating realm of link streams was made possible by Rémy’s excellent teaching of the network
science course that my classmates and I attended during the M2 program. I am particularly
grateful to Pierre, as his support enabled me to pursue my master’s thesis in the field that truly
interests me. I extend my sincere thanks to both of my advisors not only for their valuable
advice but also for their humble and sincere approach to research. They consistently listened
to my ideas and were cautious in rejecting them, fostering productive discussions and a strong
sense of belonging.

I would like to extend special thanks for the incredible opportunity presented to me through
the Ampère Excellence scholarship. This prestigious scholarship has allowed me to become a
member of ENSL and granted me the privilege of residing in the enchanting city of Lyon for
the last year.

Many special mentions are now deserved by all the friends with whom I shared the period
of my master’s (Fatemeh, Mahshid, Pouriya) and all of my classmates in Master 2 Lyon who
helped me to enjoy the new life in Lyon. I would like to kindly thank also my friend, Khorshid,
that was always sending me hope and intimacy. I would also like to mention friends and
colleagues (Victor, Fabrice, Saeed, Andrea, Sina,and Avin) that constructive discussions helped
me to go further with my research ideas.

Finally, my greatest thank you go to my family, my mother, father, and my sister because
my academic career would have never even started without their constant efforts to promote my
curiosity, perseverance, and willingness to put myself out there. They have always been and
still are my first inspiration, and my accomplishments will never be great enough to pay them
back. It was and is still hard to stay away from them, but I know that with my joy and passion
for life, and also my success, at some point, I can really compensate for their hard times and
give them happiness.

Contents

1 Context 1

2 Link stream 2
2.1 Mathematical Framework . 2
2.2 Link stream representations . 2

3 Community detection 3
3.1 Community detection in static networks . 4
3.2 Community detection in snapshots . 5
3.3 Community detection in link streams . 6

4 Network Benchmarks 7
4.1 Static Network Benchmarks . 7
4.2 Temporal Network Benchmarks . 8

5 Mosaic Framework 9

6 Mosaic Link Stream Benchmark 9
6.1 Mosaic partitioning generation . 11
6.2 Generating edges . 12

7 Mosaic evaluation score 14
7.1 Mosaic Modularity . 15
7.2 Mosaic smoothness . 16

8 Results 17
8.1 Mosaic Modularity and Static Modularity Equivalence 17
8.2 Local Mosaic Modularity and Average Modularity Equivalence in Snapshots . . 17
8.3 Testing Mosaic Modularity on Link stream Benchmark 18
8.4 Testing the Mosaic scoring function on Real world Dataset 19

9 Conclusion 20

A Community definitions 26

B Other notable community detection methods 26

C Proof of Mosaic Modularity and Static Modularity Equivalence 26

D Proof of Local Mosaic Modularity and Average Modularity Equivalence 27

E Scoring functions 28

1 Context

Graph theory is a branch of mathematics that focuses on examining a collection of vertices
interconnected by edges. Graphs represent a highly abstract and universal concept. When
we employ a graph to depict real-world scenarios, it is commonly referred to as a network,
comprising nodes and links [1, 2].

Network science tackles inquiries about international trade, traffic congestion, scientific
collaborations, online or offline social networks, and synaptic connections within the brain [2].
By employing the vocabulary of networks, these concepts can be translated into graph theory
to gain insights and make meaningful analyses.

There is a fascinating question of whether we can find communities in a network with the
property that nodes are more densely connected within those clusters than the rest of the
vertices. Community detection or graph clustering aims to answer this question and analyze
the organization and structure of networks.

Introducing Community detection techniques can yield significant advantages in real-world
settings. For instance, they play a crucial role in improving the performance of services on the
World Wide Web. Clustering web clients with similar interests and close geographical proximity
allows for implementing dedicated mirror servers, enhancing service delivery [3]. Additionally,
identifying clusters of customers with similar interests within the network of purchase rela-
tionships enables personalized recommendations and optimized marketing strategies for online
retailers like Amazon [4].

However, when in a network, both nodes and edges have the ability to emerge, vanish, or
modify their characteristics over time; defining and identifying communities can be considerably
more complex due to the increased level of detail and time-dependent nature. This additional
temporal dimension can pose significant challenges in defining a temporal community, its recog-
nition, and finally, the evaluation process.

In this master’s thesis, our objective is to discover a quality function that establishes a
concept of a good temporal community for fine-grained temporal networks named link streams.
We aim to develop a measure that evaluates the quality of partitioning, considering both topo-
logical and temporal aspects. As evaluating dynamic community detection methods without
a reliable ground truth is challenging, we will introduce a benchmark for link streams. This
benchmark will serve as a reference for assessing algorithms in subsequent stages of research in
this area.

The report is organized as follows. It commences by introducing link streams and exploring
different representations in section 2. Section 3 provides a brief overview of existing community
detection literature. The significance of benchmarks in evaluating these algorithms is discussed
in section 4, where a few are also reviewed. In Section 5, we present a comprehensive framework
named Mosaic for defining communities in link streams. In section 6, we expand a well-known
benchmark from static networks to generate fine-grained temporal networks efficiently.

Moreover, we propose novel quality functions that build upon the widely-used Modularity
method in section 7. We establish their equivalence to the existing literature in some cases.
To demonstrate the behavior of our quality functions, we analyze them using a set of samples
from the benchmark and a real-world data set in section 8.

1

2 Link stream

2.1 Mathematical Framework

Static networks are fixed network structures that represent relationships between entities. These
connections denote various associations, including social interactions, communication channels,
information flow, or any other relevant form of interdependence.

Definition 1. Static network: A simple graph G = (V,E) consists of a non-empty finite set V
of elements called nodes, and a finite set E of unordered pairs of distinct elements of V called
edges. We call V the node set and E the edge set of G. An edge u, v is said to join the vertices
u and v, and is usually abbreviated to uv. [1].

Temporal networks offer an expanded perspective where nodes and edges are subject to
changes, allowing for additions or removals in time [5]. By incorporating the element of time,
these networks capture the dynamic evolution of connections among nodes. In contrast to
static networks, which have stable relationships, in temporal networks, edges seize the temporal
dependencies and ordering of interactions between these entities.

Definition 2. Temporal Network: A dynamic graph T = (V,E, T) consists of a non-empty
finite set V , and a finite set E be temporal edges, and T be the time domain. Each temporal
edge (u, v, t) signifies that nodes u and v interacted at time t ∈ T . The time domain T defines
the set of possible time stamps or intervals when the interactions can occur. It can be discrete
or continuous, depending on the nature of the temporal network [5].

We will use a specific subset of temporal networks known as ”Link streams” [6] to narrow our
focus. In the context of temporal networks, link streams are characterized by instantaneous
edges and a continuous time domain. Conceptually, a link stream can be interpreted as a
static network where links interconnect nodes, yet each connection is associated with a set
of timestamps indicating its occurrences. Link streams have found applications in various
domains, including communication channels such as email and text messages, as well as social
networks that involve physical contacts [5, 7].

Before we proceed, let’s redefine the mathematical formulation of a link stream.

Definition 3. Link Stream: A link Stream L is a triple (V,E, T) with T = [Ts, Te] ⊂ R and
E ⊆ V × V × T models interactions over time: l = (u, v, t) ∈ E means that an instantaneous
interaction occurred between u ∈ V and v ∈ V at time t ∈ T [6].

The illustration in Figure 1 presents a link stream featuring a set of vertices V = {A,B,C,D,E, F}
where multiple temporal edges are observed. As an example, nodes A and B establish a con-
nection twice within the given period, specifically at time stamps {2, 3}.

2.2 Link stream representations

Link streams cannot be considered merely as a straightforward extension of static networks;
instead, they constitute a separate realm of study. One particular challenge lies in effectively
representing and visualizing them. To tackle this challenge, researchers have introduced several
widely-used representations [5, 6, 8, 9].

Given that the link stream is fine-grained data, a common approach is partitioning it into
a sequence of static networks known as snapshots. To accomplish this, fixed or variable time
windows denoted as ∆ are employed to segment the temporal domain of the link stream into
distinct intervals. Subsequently, the links occurring within each interval are filtered, forming a
static network where nodes represent entities and edges illustrate their interactions.

2

Snapshots

Link stream
A

B

C

D

E

F

G

∆ ∆ ∆

G1 G2G0

A
B B B

A A

C C C

DDD

E E E

F F F

GG G

Aggregated Network

B

A

C

D

E
F

G

Figure 1: Link Stream Representations: On the left, a link stream is
depicted, consisting of a set of vertices V = {A,B,C,D,E, F} along with
multiple temporal edges. On the right, two link stream representations
are illustrated. At the top, we observe a sequence of 3 ordered snapshots,
showcasing the evolving interactions over time. At the bottom, the link
stream is transformed into a static aggregated network, where edges are
displayed without a specific order or temporal information.

Definition 4. Snapshot: A snapshot of a link stream L = (V,E, T) is a static network G =
(V, F), where every edge in E adds a unit of weight on the corresponding edge in F :

F = {(u, v)|u, v ∈ V ;∃t ∈ [τ, τ +∆), (t, u, v) ∈ E}

A link stream can be divided into N ordered snapshots G = (G1, · · · , GN) with a fixed or time-
varying ∆ [5, 8, 10]. If we choose the time window ∆ to be Tend − Tstart, we will get a static
aggregated network.

This methodology captures the evolving dynamics of interactions, thereby unveiling mesoscale
temporal patterns within the network structure. For example, when examining a sequence of
text messages exchanged between individuals, people typically connect to one or no other peo-
ple at any given moment. However, by employing the snapshot method, messaging patterns
are unveiled on a broader scale, allowing for the tracking of changes over time [6].

To highlight this perspective, the left panel of Figure 1 showcases a link stream, while the
right panels depict two different representations of the same stream. At the top, we observe
a series of three ordered snapshots that showcase the evolving interactions over time. At
the bottom, the link stream is transformed into a static aggregated network, where edges are
displayed without a specific order or temporal information, providing an overview of the overall
connectivity between nodes.

3 Community detection

Real-world networks deviate from regular structures and exhibit notable heterogeneity, revealing
a high degree of organization and order in local and global arrangements. This phenomenon of
local heterogeneity is commonly referred to as ”community structure” [11,12].

Qualitatively, a community corresponds to a structure of a network, composed of nodes
densely connected and more sparsely connected to other nodes [13, 14], see Fig.1, panel aggre-
gated network.

3

We can see the concept of a community in various contexts, such as a group of friends in
online or offline social networks, proteins interacting for a biological function, or researchers
collaborating within their respective fields.

Historically, network science emerged when real-world data for temporal networks, which
capture the evolution of network structures over time, were scarce. Therefore, early research
in network science focused primarily on static networks [11].

As the availability of low-resolution temporal data, such as snapshots, improved over time,
researchers started paying attention to the dynamic nature of networks. This shift in focus led
to the development of methods and techniques for dynamic community detection, which aim
to identify and track communities or clusters of nodes that evolve in temporal networks [15].

Nowadays, we have access to fine-grained temporal networks, such as link streams. In these
networks, defining and identifying communities can be considerably more complex due to the
data’s increased level of detail and time-dependent nature.

Therefore, we shall commence with a comprehensive analysis of well-established approaches
employed within static or snapshot networks. Subsequently, we redirect our attention to why
addressing this inquiry within higher-resolution networks is crucial, which refers to link streams.

3.1 Community detection in static networks

Community detection in static networks has received significant attention and investigation [11,
16]. Researchers from various disciplines have proposed numerous definitions for communities
and approaches for automatically extracting these structures.

Our particular focus lies in community detection algorithms that effectively partition the
”nodes” of a network into distinct, non-overlapping communities. We will obtain partitioning
by applying such an algorithm to a given network.

Definition 5. A partitioning Cof a network G = (V,E) involves the division of the network into
k nonempty and mutually exclusive communities, denoted as ci for each i ∈ {1, . . . , k}. Each

community ci represents a subset of nodes Vci ⊆ V where
k⋃

i=1

Vci = V and (Vci∩Vcj = ∅,∀i ̸= j).

Although numerous partitionings are available for a single network, not all effectively cap-
ture its communities’ topological structure. While we primarily concentrate on a particular
subset of algorithms that seek a globally-optimal community partitioning, we will also provide
comprehensive explanations of other notable techniques and community definitions in A.

3.1.1 Globally-optimal community detection

In Globally-optimal community detection, the procedure begins by choosing a scoring function
that quantifies communities as groups of nodes with dense connections. Then, one can use
specific optimization techniques to find a partitioning that maximizes the scoring function.
Afterward, they usually evaluate the outcome of their algorithm based on a reliable ground
truth [17].

Globally-optimal algorithms are challenging due to multiple factors: There is no widely
recognized definition for communities, and they are usually determined algorithmically, mean-
ing they are the algorithm’s outcome [18, 19]. Even if we agree upon a single definition, the
formalizations of community detection give rise to NP-hard problems [20]. Moreover, the lack
of ground truth makes evaluation tricky.

We can broadly categorize the scoring functions into two main groups: scoring based on
connectivity(internal, external, mixed) or a network model [17,18,21], refer to appendix E and
Figure 9. Within the latter category, one widely-used measure is Modularity. We will explain
it in detail in the following subsections.

4

3.1.2 What is Modularity?

To address the query ”What is the optimal partitioning?” scholars have introduced global
metrics, such as M. J. Newman’s Modularity [14]. Modularity is proportional to the number
of edges falling within a community minus the expected number in an equivalent network with
links placed randomly, preserving the degree sequence of nodes. Thus, Modularity is defined
as below:

Q(W, C) = 1

2m

∑
(i,j)∈V 2

[
Wij −

kikj
2m

]
δ(ci, cj) (1)

where Wij represents the number of edges between nodes i and j is an entry of adjacency
matrix W . ki represent the degree of node i, m represents the total number of edges in the
network, ci is the group membership of node i, and δ(ci, cj) is the Kronecker delta function
equal to 1 if nodes i and j belong to the same community, and 0 otherwise.

Modularity is a scale value between -0.5 (non-modular) and 1 (fully modular). If the number
of links within a group is not different from what we would expect by chance, the Modularity
value is zero [22].

3.1.3 Why is Modularity a good scoring function?

After defining the Modularity, we need to apply an optimization method to find the optimal
partitioning, denoted as Ĉ, that maximizes the value of Q(W, C). Mathematically, this can be
expressed as:

Ĉ = argmax
C

Q(W, C)

Although considerable effort has been dedicated to solving this optimization problem, it
has been proven to be NP-complete [23]. Nevertheless, numerous greedy heuristics have been
introduced, including a bottom-up approach [13,24] or multi-level greedy search [25].

However, it has been discovered that the optimization of Modularity fails to identify mod-
ules smaller than a specific scale known as resolution limit [26]. Furthermore, it also finds
communities in random networks [27].

Despite these limitations, Modularity remains a valuable framework, widely used and suc-
cessful in practice. Modularity’s simplicity and additive nature enable fast optimization heuris-
tics, making it highly advantageous. Consequently, introducing Modularity to link streams
would undoubtedly make a significant and worthwhile contribution to the field.

3.2 Community detection in snapshots

Since snapshots are sets of ordered static networks, static community detection algorithms
can be applied separately to each temporal partition. This approach eliminates the need for
analytical tools specifically designed to handle temporal data.

Various researchers have carried out several surveys [15,28–30] to present the distinctive fea-
tures and challenges of dynamic community discovery and propose a classification of published
approaches. We will refer to the comprehensive survey by Roessetti and Cazabet (2018) [15]
that classifies methods into Instant-optimal, Temporal Trade-off, and Cross-Time. We will
briefly explain the two categories that relate more to our proposed framework.

One category of techniques, known as instant-optimal methods, involves applying a static
algorithm independently to each snapshot and determining the optimal partitioning for each
one. Subsequently, these methods attempt to match communities between snapshot Gt and
snapshot Gt+1 that share similar nodes.

A straightforward approach [31] is to establish a match between communities ci and cj
in consecutive times when their Jaccard index J (ci, cj) surpasses a predefined threshold Θ.

5

Jaccard index between two communities ci and cj can be defined as:

J (ci, cj) =
|Vci ∩ Vcj |
|Vci ∪ Vcj |

This category of methods does not include temporal smoothing; neither does it explicitly
consider temporal dynamics. Additionally, static community detection methods often yield
highly variable results, leading to instability in temporal partitioning.

Second, in the Temporal Trade-off category, communities defined at an instant t do not only
depend on the topology of the network at that time but also on the past partitions found.

These methods offer incrementally smoothed partitioning based on objective optimization
[32,33], balancing instantaneous quality and temporal smoothness. This criterion can be defined
as:

Q∗ = ζQsnapshot + (1− ζ)Qsmoothness

In which Qstability is a temporal smoothing function and ζ ∈ [0, 1].

3.2.1 What are the limitations of community detection using snapshots

A critical issue related to the low-resolution temporal networks is identifying the optimal win-
dow size ∆ to use when generating the snapshots, a choice that can profoundly affect the
outcome of the subsequent analysis. The problem of choosing an appropriate window size has
been extensively investigated in the field of temporal networks [34].

When the window size is chosen to be significantly larger than the timescale of dynamics
in the network, the outcomes of community detection will become over-smoothed. Conversely,
opting for a relatively small window size can lead to fluctuations within the community assign-
ments [5, 15, 35].

However, considering the overall context of link streams, finding the optimal window size is
irrelevant due to the fine time resolution concerning the dynamics. Instead, a distinct realm of
study is required to explore community detection methods in this scenario.

3.3 Community detection in link streams

The literature on community detection in link streams is small since it is a more recent concept,
and data with fine-grained temporal information was usually rare. There are, however, a few
attempts to identify other notions of communities.

One such attempt is to utilize cliques. Cliques, in general, are sets of vertices that interact
with all other vertices. Extending this definition to link streams, maximal cliques are cliques
that maximize the number of nodes and duration, which can be detected by the algorithm
proposed by Viard et al. [36]. Subsequent studies [37–41] have further improved this algorithm.

Although cliques offer a quantitative approach to identifying communities, they may not be
suitable for real-world scenarios due to their strictness. Factors such as measurement errors or
application-specific considerations can result in the absence of edges within cliques. To address
this issue, a more relaxed definition called k-plexes has been proposed [42]. =

Definition 6. A k-plex is a maximal subgraph with the following property: each vertex of the
induced subgraph is connected to at least n-k other vertices, where n is the number of vertices
in the induced subgraph. A clique corresponds to a 1-plex.

This relaxation allows for the presence of communities with missing edges while still main-
taining cohesion within the k-plex [42]. However, this notion is still restrictive compared to the
original definition.

From another perspective, communities can be conceptualized as sets of edges rather than
individual nodes, referred to as link communities [43]. There is a growing interest in detecting

6

link communities within a link stream. Density measures how consistently pairs of nodes are
connected over time [6]. When a link community has a higher density than neighboring, it
becomes significant in terms of both structure and temporal connectivity [44].

Moreover, a scoring function inspired by Modularity called Expected Nodes has been devel-
oped to detect link communities. It assumes that a link community usually involves fewer indi-
viduals than expected, while the surrounding links involve more individuals than expected [45].

While the concept of link communities provides valuable insights into the link stream, our
focus lies on a definition that assigns a node to a community at a specific timestamp rather
than considering the links themselves.

Despite the advancements in finding communities in link streams, this remains an ongoing
research area with unanswered questions. Each solution developed so far has its strengths and
limitations, and researchers continue to strive for more effective and comprehensive approaches
to address the challenges posed by dynamic network data.

4 Network Benchmarks

Assessing and comparing the community detection algorithm presents a significant challenge.
Although real-world datasets could offer valuable insights, it has been shown that node meta-
data are not the same as ground truth and that treating them as such induces severe theo-
retical and practical problems [46]. To overcome this limitation, researchers have developed
benchmarks to generate synthetic networks for examining algorithm behavior on networks with
diverse predefined properties [47].

Network Benchmarks enable checking an algorithm against [48]:

• ’Definition’ of communities: Since there is no universal definition of community, a bench-
mark with its ground truth defines what we want to find and check if the method indeed
recognizes it.

• Stability: The effectiveness of a Community detection method can be evaluated by testing
it on numerous network instances that share similar characteristics. This test estimates
the algorithm’s stability, indicating how well it performs consistently across different
network scenarios.

• Scalability: By gradually increasing the network size, it becomes possible to determine
how well the algorithm handles larger and more complex networks.

With a similar structure to the last section, we will begin by thoroughly examining Bench-
marks designed explicitly for static scenarios. Subsequently, we will focus on exploring temporal
network benchmarks.

4.1 Static Network Benchmarks

According to [11], several Benchmarks for static networks, each capturing different properties of
communities, exist. A valuable benchmark called Stochastic block models (SBM, also random
planted partition graphs) [12,49–51] was one of the starting points for generating synthetic static
networks with communities. It gets a partitioning C = {c1, c2, · · · , ck} including k communities
with a desirable number of nodes, pin. Moreover it gets two values between [0, 1] as probability
pin and probability pext. Vertices of the same community are connected with a probability pin,
whereas vertices of different groups are linked with a probability pext.

Another widely-used Benchmark named LFR [47] is developed to generate static networks
with real-world properties. They assume that the distributions of overall degrees of nodes and
community sizes are power laws, with exponents τ1 and τ2, respectively. Each vertex shares a

7

fraction 1 − µ of its edges with the other vertices of its community and a fraction µ with the
vertices of the other communities; 0 ≤ µ ≤ 1 is the mixing parameter.

Although many other notable Benchmarks for static networks show diverse perspectives of
real networks, we only mentioned methods that are most relevant to our work.

4.2 Temporal Network Benchmarks

However, a major assumption has been made so far by many proposed generators: the networks
modeled are static, and the communities stay the same as time goes by.

Figure 2: Progressively evolving communities: Every node is depicted as
a horizontal line. Different colors show the communities. The flow of
events is captured through arrows and labels. [15]

A few methods have already been introduced in the literature to generate benchmark graphs
for evolving communities [48, 52–55]. By evolving communities; we mean that the evolution
of communities can be characterized by the fundamental events of birth, death, merge, split,
expansion, and contraction, iterative continuation, and ship of Theseus, see Figure 2 for an
illustration and a complete formalism at [15].

We will explain one of the latest works tailored for progressively evolving networks [56].
This Benchmark is built upon the fact that empirical observations from real-world datasets
indicate a trend in which the density of a community tends to decrease as its size increases
while the average internal degree of the community increases. Based on a two-step process,
first, the experimenter describes the scenario based on events and creates a set of communities
denoted as C; next, edges are generated by a random process using two parameters, a density
coefficient α ∈ (0, 1] that defines the internal probability as pin = (|Vc|−1)α−1 and a parameter
of community identifiability that controls the external density.

However, to the best of our knowledge, no benchmarks have yet to be specifically tailored
for link streams to account for their continuous time domain and the asynchronous nature of
edge occurrences.

8

5 Mosaic Framework

To answer the question of what temporal community is in link streams, we need to introduce a
new definition that expands the non-overlapping community to include the time-related aspect
of relationships. We want to match our definition with the communities we observe in snapshots
and static situations. To achieve this, we can think of each community in a link stream as a
group of nodes that interact during a specific period.

In simple terms, we can define a Mosaic as follows:

Definition 7. A Mosaic, denoted as c, is defined as a pair of (nodes, period): c = (Vc, Tc). Vc

is set of n nodes denoted as {v1, v2, · · · , vn}. Tc is a tuple, Tc = (Tcs, Tce) where, Tcs and Tce

represent the start and end times of a Mosaic c, respectively. It represents the interval in which
nodes V are considered part of the community c.

T

V

v1

v2

v3

v4

c1
c2

c3

Figure 3: Mosaic partioning: A mosaic partitioning C = {c1, c2, c3} is
shown. It covers {v1, v2, v3, v4} × [0, 10) without any overlap.

After defining a Mosaic community, Mosaic partitioning can be defined as follows:

Definition 8. Mosaic partitioning: Given a link stream L = (V,E, T), C is a partitioning
containing k mosaics {c1, c2, · · · , ck, c∗} that cover the link stream fully without any overlap,
refer to Figure 3. The empty community c∗ is where nodes inside do not interact with other
nodes in the link stream. This requirement can be written as follows:⋃

c∈C

Vc × Tc = VL × TL

6 Mosaic Link Stream Benchmark

In this section, we aim to introduce an innovative Benchmark that leverages the unique features
of link streams, namely the continuous nature of the time domain and instantaneous edges
using the Mosaic communities. This Benchmark addresses the absence of reliable ground truth
for evaluating the effectiveness of partitioning in a link stream and testing the stability and
scalability.

Although a few algorithms are tailored for link streams, to the best of our knowledge, we
will be the first to introduce a benchmark for these dynamic graphs. It is worth mentioning
that not only a benchmark offers a platform to explore the strengths and limitations of any
algorithm, but it also functions as a playground for creating new methodologies.

We introduce the Random Mosaic Link Stream Benchmark, which aims to incorporate a
temporal dimension into the random planted partition graph (refer to section 4.1), following a
five-step process; see Figure ??:

Step A: Mosaic partitioning generation: Given time domain T = [Ts, Te] and a set of nodes V ,
a partitioning C is obtained using Ad-hoc language or random Mosaic Partitioning.

9

T

V

c1
c2

A. Scenario description

c4

c5

T

V

c1
c2

c3

c∗

B. Empty Mosaics (γ)

c∗

T

c1

C. Internal Edges Generation
α → pin

D. External Edges Generation

T

V

c2

c3

β → pext

eij
i

j

Pc1
c3

Poisson
λin jV

i

Pc2 ∩ Pc3

λext

T

V

c1 c2

c3

c∗

E. Rewiring Noise (η)

c∗

Poissoni

j

eij

Figure 4: Random Mosaic Link Stream Benchmark: This figure
illustrates a five-step process. Step A involves creating a scenario. Step
B focuses on removing a fraction (γ) of mosaics to create an empty com-
munity named c∗, if necessary. Steps C and D add internal and external
edges, respectively. Finally, if needed, in the last step, a fraction (η) of
edges in the link stream can be rewired to different time intervals, node
sources, and targets.

Step B: Empty Mosaics: In real-world scenarios, it is common to see a subset of nodes be
inactive over a while. For example, when we examine the physical contact among
students in a class, we observe that these students interact with each other solely
during school hours. However, once the night falls, their contact with one another
ceases. Therefore, we consider a fraction γ of Mosaics assigned to an Empty Mosaic
c∗. We mean that within this Empty Mosaic, no edges can be active that originate
from either inside or outside, affecting the nodes contained within it.

Step C: Internal edge generation: To generate edges within a community c ∈ C, excluding
the empty community c∗, we employ a semi-random procedure. Initially, we create a
backbone of connections using a density coefficient αc that determines the probability
of two nodes being connected within the community period Pc. Next, we use a Poisson
point process for each edge within the backbone network with a rate proportional to
λc
in to determine those edges’ active times. The Poisson point process introduces ran-

domness into the generation of edges, allowing connections to be randomly distributed
within the period of community. Refer to part 6.2 for a formal description.

Step D: External edge generation: To establish connections between communities c and c′,
we employ a similar procedure described in step C. First, a backbone of connec-
tions is created using a community identifiability parameterβ, which determines the
pcc′ext, the likelihood of a connection between nodes in the overlapping period Pc ∩ Pc′.

10

Subsequently, a Poisson point process is utilized for each edge within the backbone
connectivity network, with the rate of occurrence being proportional to λcc′

ext to find
external edges’ activation time.

Step E: Rewiring noise: In our Benchmark, we introduce a parameter η = [0, 1] to incorporate
an element of noise. A portion η of the edges undergo a rewiring process, aiming to
highlight the imperfections in community structures. In this step, for edges u, v, t
selected in the sample η ∗ |E| edges, select two other nodes such that u′ ∈ cu and
v′ ∈ cv and a timestamp randomly selected in the period of Tcu ∩ Tcv .

Steps B and E are straightforward. In what follows, we will explain the process of the Mosaic
Partitioning Generation (step A in part 6.1). Subsequently, we will delve into the underlying
procedure of generating internal and external edges(Steps C and D in part 6.2).

6.1 Mosaic partitioning generation

Provided a user-defined node set V and time domain T , we proceed to generate diverse sce-
narios for benchmarking link streams to evaluate the dynamic community detection algorithms
from various perspectives. We have devised four types of Mosaic partitioning: Experimental,
Snapshots, Hierarchical, and Random. All these partitionings follow the primary assumption
that Mosaics are communities containing a set of nodes and a period, and they fully cover the
link stream. Detailed explanations of these algorithms and their properties will be investigated
in further research steps; Figure 5 provides a brief overview.

A. Experimental design

VV

V V

B. Snapshots

C. Hierarchical D. Random
T

T

T

T

Figure 5: Mosaic Partitioning Generation This figure illustrates four
different approaches for generating Mosaic Partitioning in the Bench-
mark. Type A: User-defined nodes and periods create the desired sce-
nario. Type B: The time domain is divided into multiple frames or snap-
shots, and node sets are randomly allocated within each frame. Type C:
Hierarchical Mosaics are generated based on the requested depth. Type
D: Period and Node set sizes are distributed inhomogeneously, covering
the entire link stream.

11

6.2 Generating edges

In this section, our primary focus is generating edges between nodes within and across different
communities. We will follow two steps: Creating a Backbone connectivity network (details in
part 6.2.1) and using the Poisson point process (details in part 6.2.2); refer to Algorithm 1.

Algorithm 1 Edges Generation

1: procedure EdgesGeneration(C, α, λ, β)
2: Create an empty list E
3: for c in C\c∗ do ▷ Generate internal edges
4: pcin = (|Vc| − 1)α−1

5: List S =BackboneConnectivity(c,c,pcin)
6: for e in S do
7: Add PoissonProcessEdge(e,Pc,λ

cc) to E

8: for (c, c′) in
(C\c∗

2

)
do ▷ Generate external edges

9: pcc
′

ext = β((|Vc|+ |V ′
c |)− 1)α−1

10: List S =BackboneConnectivity(c,c′,pcc
′

ext)
11: for e in S do
12: Add PoissonProcessEdge(e,Pc ∩ Pc′ ,λ

cc′) to E

13: return E

6.2.1 Backbone connectivity network

This Benchmark assumes that the connectivity between nodes, whether through internal or
external edges, remains stable throughout the specified period. This is why we refer to it as
the backbone connectivity network. A backbone connectivity network with a parameter p is a
random graph in which each edge is present with probability p, independent of others.

Algorithm 2 Create BackBone connectivity

1: procedure BackboneConnectivity(p, V1, V2)
2: Create an empty list S
3: for (v1, v2) in

(
V1×V2

2

)
do

4: r ← random uniform between 0 and 1
5: if r ≤ p and v1 ̸= v2 then
6: add (v1,v2) to s

7: return S

We would like to emphasize that for establishing a well-defined internal structure of a
community, it is necessary to utilize an appropriate range of values for p. This range’s selection
should depend on the number of vertices within the community. To achieve this, we will adopt
the model described in [56], which provides the formula for pcin as follows:

pcin = (|Vc| − 1)α−1

Here, α ∈ (0, 1] is a hyperparameter named community density coefficient shared between
communities. When the value of α is increased, the probability of pcin also increases, leading to
denser clusters. If α is set to 1, each community in Mosaic becomes a clique.

The external probability between two communities c and c′ denoted as pcc
′

ext is defined as:

pcc
′

ext = β((|Vc|+ |V ′
c |)− 1)α−1

12

This hyperparameter β ∈ [0, 1], called ”community identifiability,” is shared among all commu-
nities. Increasing the value of β results in more external edges between communities, making
it more challenging for algorithms to identify each community as a separate cluster. In other
words, β controls the external density of backbone connectivity by treating two communities
as a single entity.

6.2.2 Poisson Point Process

To simplify the analysis, we assumed that the edges in a given backbone connectivity network
follow a memory-less Stochastic Process for their activation times. First, we will review the
definition of a Poisson process [57].

Definition 9. Poisson Process: The counting process N(t), t ≤ 0 is said to be a Poisson process
having rate λ, λ > 0, if:

(i) N(0) = 0.

(ii) The process has independent increments.

(iii) The number of events in any interval of length t is Poisson distributed with mean λt.
That is, for all s, t ≤ 0:

Pr(N(t+ s)−N(s) = n) = e−λt (λt)
n

n!
, n = 0, 1, · · ·

Algorithm 3 Poisson Process of an edge

1: procedure PoissonProcessEdge(e, λ, P)
2: Create an empty list S
3: n ∼ Poisson(λ|P |)
4: for i in n do
5: sample t from Uniform(Ps, Pe)
6: add (e, t) to S

7: return S

For each edge e = (i, j) in the backbone connectivity network, we generate an i.i.d random
Poisson point process with a rate parameter |P |λ. This rate parameter determines the average
number of this edge active times within the time frame P . Then, we use the uniform distribution
to distribute this number of occurrences in the selected period. This means the edge time
arrivals are uniformly spread over the interval P [57].

To establish internal edges within each community c, we require a parameter λc
in. Further-

more, to generate external edges between communities c and c′, we utilize a coefficient λcc′
ext.

Combining these, we need a symmetric matrix λ of size k × k, where k represents the number
of communities. The main diagonal of this matrix will be utilized for generating internal edges,
and non-diagonal elements can be employed for external edges if there is a non-empty time
overlap (Pc ∩ P ′

c ̸= ∅) between the communities c and c′.

6.2.3 Estimated number of edges and Time complexity

The expected number of internal edges in a Mosaic community c = (Vc, Tc) equals to |Tc|λcc ·
|Vc|(|Vc|−1)α

2
. So, the overall number of internal edges is:

Einternal(C) =
∑

c∈C\c∗

|Tc|λcc ·
|Vc|(|Vc| − 1)α

2

13

The expected number of edges between two communities c = (Vc, Tc) and c′ = (V ′
c , P

′
c),

the expected number of edges can be determined as |Tc ∩ T ′
c|λcc′ · pcc

′
ext

|Vc||V ′
c |

2
. Thus, the overall

number of external edges is:

Eexternal(C) =
∑

(c,c′)∈(C\c∗×C\c∗
2)

|Pc ∩ P ′
c|λcc′ · β((|Vc||V ′

c |)− 1)α−1 |Vc||V ′
c |

2

Each community is processed independently, and the generation process can be efficiently
parallelized. Finding the upper bound for memory and time complexity will be very complex
due to dependence both on the time and structure, but we will assume an extreme case:

• Every node is connected to the other nodes in the community and between communities,
α = 1, β = 1.

• The node set, V , is divided into k equal parts, Vci =
|V |
k
.

• Each part lasts from the beginning to the end, maximizing |Pc| and also |Pc ∩ P ′
c|.

• λcc′ = rλcc where r ≥ 1.

With this simplification and with knowing that creating backbone connectivity takes less time
and memory compared to the point process, we can write for both memory and time complexity:

Algorithm complexity = |T |λcc(
∑

c∈C\c∗

|Vc|(|Vc| − 1)

2
+ r

∑
(c,c′)∈(C\c∗×C\c∗

2)

|Vc||V ′
c |

2
)

= |T |λcc

k + r
(
k
2

)
k2

O(|V |2) = O(rλcc|T ||V |2)

This enables handling large networks in a reasonable time. Moreover, deterministic hash
functions can be utilized for their generation to reduce Memory complexity.

7 Mosaic evaluation score

Based on our understanding of the state-of-the-art, we will propose a novel scoring function for
evaluating partitioning quality in a link stream. This definition of the Mosaic evaluation score
is a powerful tool that helps define a measure to evaluate the goodness of temporal community,
where to the best of our knowledge, it did not exist before. In the next steps, by optimizing such
a function for the link stream, we can find the optimal partitioning capturing both topological
and temporal aspects of a temporal network.

The Mosaic scoring function simultaneously preserves two essential temporal community
behavior properties. A partitioning is considered good if nodes belonging to the same Mosaic
exhibit stronger connections than nodes in Mosaics. Moreover, nodes of the link stream should
undergo minimal changes in their assigned Mosaics over time.

It is worth noting that the second property contradicts the first one, as a dense small Mosaic
often scores higher with the topological structure. However, introducing a smoothness factor
will balance this artifact and force communities to continue in time to increase stability.

The proposed scoring function combines these two factors to balance the strength of commu-
nities, Mosaic Modularity QMM, and the smoothness of transitions, Mosaic Smoothness QMS,
using a weighing value ζ ∈ [0, 1].

We can define Q∗ as follows:

Q∗ = (1− ζ)QMM + ζQMS (2)

14

If ζ is close to 0, it indicates a higher emphasis on the strength of communities, meaning
that the topological structures inside the Mosaics play a more significant role in determining
the score. On the other hand, if ζ gets larger, it indicates a higher emphasis on the smoothness
of transitions, highlighting the importance of temporal dependencies and stability among the
communities.

7.1 Mosaic Modularity

Modularity can be defined as a metric that quantifies the difference between the observed and
an expected network structure that would arise in a ”null” network. A null network breaks
the connections between nodes and establishes them randomly to avoid any specific patterns
of significance, preserving desired properties.

Given a link stream L = (V,E, T), we can generalize the Modularity 1 as below:

QMM =
1

2|E|
∑
c∈C

∑
(i,j)∈V 2

c

Wij|Tc −Bij|Tc (3)

where Wij|Tc represents the number of edges between nodes i and j in the period of community
c, |E| represents the total number of edges in the link stream, and the Bij|Tc represents the
expected number of edges between nodes i and j during the period Tc within the link stream
L in the null model.

In what follows, we will introduce different null models designed explicitly for link streams.
We will categorize these proposed equations into global, local, and mixed groups of Mosaic
Modularity.

7.1.1 Global Mosaic Modularity

As mentioned earlier, the degree-preserved null model is commonly employed for static net-
works, as represented by Equation 1. To extend this concept, we generalize it to encompass
the overall node degree during the time domain T of the link stream:

Bij|Tc =
|Tc|
|TL|

kikj
2|E|
|TL

Here, ki represents the degree of the node i when aggregating the entire network into a
static form.

7.1.2 Local Mosaic Modularity

In link streams, an alternative approach is available for determining the expected number of
edges between nodes i and j. This approach, known as local Mosaic Modularity, emphasizes
preserving the node degrees within each community.

Bij|Tc =
kikj
2m
|Tc

Here, m represents the total number of edges within the period Tc of the Mosaic c in the link
stream L. The term ki|Tc denotes the degree of the node i in the period Tc, which is calculated
as the number of edges connected to node i during that period.

7.1.3 Mixed Mosaic Modularity

In the category of Mixed Mosaic Modularity, we will focus on a null model that integrates the
local and global structure of link streams. It is calculated based on the average degrees of the
nodes involved and the overall connectivity of the network.

15

The formula for expected number of edges between i and j during the period of Tc is as
follows:

Bij|Tc =
k̂ik̂j
2m̂

We can break down the formula as follows:

• k̂i and k̂j represent the average degrees of nodes i and j in the link stream L respectively.
They are calculated as follows:

k̂i =
|Tc|
|TL|

ki|TL

• m̂ represents the expected number of edges in the entire link stream L during the period
Tc. It indicates the average connectivity of the network during that period. To understand
m̂, we need to consider the vertices that are connected to at least one vertex in Vc within
the period Tc. Let’s denote this set of vertices as U . We can express m̂ as follows:

2m̂ =

|U |∑
i=1

k̂i =

k̂i i ∈ Vc

k̂i
|Tx ∩ Tc|
|Tx ∪ Tc|

i /∈ Vc → i ∈ Vx

7.2 Mosaic smoothness

The Mosaic smoothness measures another aspect of the goodness of Mosaic partitioning C; it
wants nodes of the link stream to undergo minimal changes in their assigned Mosaics over time.
We are interested in the average number of changes per node, so we will use a mediator network
G = (C, E) that captures the temporal connectivity of communities. To construct this network,
we add an edge (ci, cj) in E for any pair of consecutive non-empty communities (ci and cj) that
share a common set of nodes, refer to Figure 6.

T

V
c∗

c∗

c5
c6

c1 c2
c3 c4

c7

c8

c2 c3 c4c1

c5 c6 c7

c8

A B

Figure 6: Mosaic Smoothness: The left panel illustrates a Mosaic
partitioning. On the right panel, we observe the mediator temporal con-
nectivity network for that partitioning. It is worth noting that during
the construction process, any connections from or to the empty commu-
nity (c∗) are disregarded, highlighting the emphasis on preserving the
smoothness of the Mosaic partitioning.

We can express the average number of changes per node denoted as X as follows:

X =

∑
(ci,cj)∈E |Vci ∩ Vcj |

|V |
To minimize this value, we use the transformation 1

1+X . Adding 1 in the denominator
considers the scenario where E is empty, indicating complete smoothness. Overall, we can
write our Mosaic smoothness as:

QMS =
1

1 +

∑
(ci,cj)∈E |Vci∩Vcj |

|V |

16

8 Results

In this section, we will explore the characteristics of our Mosaic scoring function to see if
it aligns with previous studies on static networks and snapshots. First, we expect Mosaic
Modularity(first term of Equation 2) to be similar to certain notions of Modularity under
specific conditions.

To the best of our knowledge, a single paper [56] has been published so far comparing em-
pirically dynamic community detection algorithms considering the smoothness(second term of
Equation 2). However, in this paper, the smoothness parameters were only tested on progres-
sively evolving networks and not on the link streams.

In what follows, we shall first prove that the structural term is equivalent to some notions of
Modularity. Next, we will use our techniques on examples from a benchmark and a real-world
data set to demonstrate how the proposed scoring function can account for the presence of
communities in temporal networks.

8.1 Mosaic Modularity and Static Modularity Equivalence

If we assume a partitioning where nodes within communities retain their community assign-
ments over time, QMS = 1, the Mosaic Modularity term will align with the static Modularity.

Theorem 1. For a link stream L = (V,E, T) with QMS = 1, the local/global/mixed Mosaic
Modularity can be simplified to static Modularity.

In appendix C, we prove the equivalence for global mosaic modularity. One can use similar
arguments to mixed and local Modularity, resulting in an equivalence between all levels of
Mosaic Modularity and static Modularity.

8.2 Local Mosaic Modularity and Average Modularity Equivalence
in Snapshots

Given link stream L = (V,E, T), the network can be partitioned into R snapshots with a
fixed or varying windowsize ∆, resulting in a lower resolution temporal network represented
as L = (π1, π2, · · · , πR). There exists a scoring function that is designed for snapshots, named
average modularity [58]; which can be expressed as:

Qavg =
1∑R

r=1 ωr

R∑
r=1

ωrQ(πr)

where Qavg denotes a weighted formula combining static Modularity across different snap-
shots.

We will prove that the local Mosaic Modularity is equivalent to the average Modularity when
employing a particular weight function ωr. The equivalency of two formalisms coming from two
different research directions is interesting. The proposed weight function is not mentioned in
the paper [58] itself. Thus, it can lead us to find meaningful communities with a new evaluation
score.

Theorem 2. Local Mosaic Modularity is equal to the average Modularity, where the weight
assigned to each snapshot is the total number of edges in that particular snapshot.

The proof of this theorem is written in Appendix D. It is worth noting that this equivalency
does not hold in global or mixed Mosaic Modularity.

17

8.3 Testing Mosaic Modularity on Link stream Benchmark

To complete the discussion on the evaluation setting, we will apply the proposed scoring func-
tions to the benchmark samples and find their capabilities and limitations. In this section,
we want to see the effect of the community structure’s strength in a link stream varying the
benchmark initialization hyperparameters.

A) Mosaic partitioning

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.57 0.43 0.40 0.31 0.25 0.26 0.23 0.19 0.17 0.11 0.10

0.56 0.50 0.36 0.30 0.31 0.21 0.22 0.16 0.16 0.13 0.09

0.56 0.46 0.38 0.33 0.26 0.24 0.18 0.13 0.13 0.10 0.06

0.53 0.46 0.37 0.31 0.25 0.22 0.17 0.14 0.12 0.08 0.07

0.54 0.41 0.34 0.29 0.24 0.20 0.16 0.13 0.08 0.06 0.05

0.54 0.42 0.34 0.27 0.22 0.17 0.14 0.10 0.08 0.06 0.03

Local Mosaic Modularity

C) Mosaic Modularity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.44 0.34 0.29 0.22 0.25 0.23 0.20 0.20 0.18 0.15 0.16

0.40 0.39 0.27 0.23 0.24 0.18 0.18 0.16 0.12 0.13 0.14

0.45 0.33 0.27 0.22 0.19 0.17 0.15 0.13 0.13 0.11 0.11

0.41 0.33 0.26 0.23 0.19 0.15 0.12 0.12 0.11 0.08 0.09

0.42 0.32 0.25 0.20 0.16 0.13 0.10 0.11 0.09 0.07 0.07

0.42 0.33 0.25 0.20 0.14 0.11 0.10 0.08 0.07 0.06 0.05

Static Modularity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.62 0.49 0.43 0.34 0.27 0.29 0.26 0.22 0.19 0.14 0.11

0.61 0.54 0.40 0.34 0.35 0.24 0.25 0.18 0.19 0.16 0.12

0.61 0.49 0.42 0.36 0.29 0.26 0.21 0.16 0.15 0.13 0.09

0.60 0.51 0.41 0.36 0.30 0.26 0.20 0.17 0.15 0.11 0.10

0.60 0.47 0.39 0.33 0.29 0.24 0.20 0.17 0.12 0.10 0.08

0.60 0.48 0.39 0.32 0.27 0.22 0.18 0.14 0.12 0.09 0.07

Global Mosaic Modularity

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

203 239 271 329 305 344 367 425 421 441 443

292 333 362 417 447 428 494 568 599 599 641

376 442 501 536 609 645 745 732 771 860 918

540 580 685 751 836 856 942 1064 1136 1161 1231

706 815 919 1013 1107 1280 1318 1477 1558 1685 1788

950 1105 1251 1412 1553 1694 1823 2025 2125 2297 2450

B) Number of edges

D)Network Snaphsot Overview

=
0.

5
=

0.
05

1 2

=
0.

5
=

1

Figure 7: Testing Mosaic Modularity on the Link Stream Bench-
mark: The Mosaic partitioning of the Link Stream Benchmark is de-
picted in panel A, where 50 nodes interact within the time interval [0, 50).
To create edges, we used λcc′ = λc = 0.01, and we varied α from 0.5 to
1 and β from 0 to 1, resulting in an increased number of edge as each
parameter was increased(Panel B). The values of Mosaic Modularity and
the optimal value of static Modularity are displayed in panel C. Panel D
shows two samples from this benchmark, illustrating snapshots π1 and
π2. Increasing β while fixing α makes the communities less distinctive
and more interconnected.

As was mentioned in section 6.2, β ∈ [0, 1] is the community identifiability parameter
and the α ∈ (0, 1] is the internal density coefficient. The choices of α and β can affect the

18

community structures by changing the probability of connections in the backbone connectivity
networks, thereby affecting their ability to identify them. If β is zero, we have a few disconnected
communities. As we increase β, the Mosaic Modularity should decrease since it is more difficult
to distinguish separate communities.

We create a snapshot Mosaic using Mosaic partitioning Type B for the empirical testing.
Given the number of nodes and time steps of 50, we start testing different values for hyperpa-
rameters α ∈ [0.5, 1] and β ∈ [0, 1] and then simulate the stream and find the corresponding
values for local, global Mosaic modularity. Moreover, we also calculate the static Modularity
using greedy optimization for the static aggregated network. In Figure 7 and its caption, we
have explained the effect of α and β on the number of edges and network representation briefly.

Interesting results can be obtained by analyzing the behavior of local and global Mosaic
Modularity values and comparing them to static Modularity. When we decrease the value
of β from 1 to zero while keeping α fixed, we observe an increase in both local and global
Mosaic Modularity values. This increase indicates that the scoring function can successfully
identify communities when they are present. On the other hand, if we increase both α and β
simultaneously, the connectivity between nodes increases, but the evaluation scores decrease
rapidly, depicting less clear communities, which is true. Specifically, when α = β = 1, the
value approaches zero. All these observations confirm that the proposed Mosaic Modularity
has a well-defined behavior that aligns with the expectations and is compatible with existing
methods in the literature.

8.4 Testing the Mosaic scoring function on Real world Dataset

In this section, we aim to elucidate how Mosaic scoring function can be utilized to determine the
ideal windowsize ∆ when employing well-established methods in snapshots or static networks.

To evaluate our scoring function using real-world datasets, we require an interaction dataset
with high temporal resolution. Sociopatterns1 is a database that offers such data in various
contexts. In these scenarios, individuals are equipped with RFID sensors, enabling the mea-
surement of their real-time proximity. For instance, a notable example is a primary school
study [59]. Over the course of two consecutive days, 230 pupils and 10 teachers wore sensors,
resulting in a total of 125,000 face-to-face interactions recorded for 32 hours at a time resolution
of 20 seconds . The left panel of Figure 8 illustrates the interactions between individuals over
time, with each interaction color-coded based on their corresponding classes. Additionally, it
presents the static network formed by merging all the interactions between individuals.

Initially, we converted our link stream into a snapshot network by employing the described
methodology, where the windowsize ranged from 1 minute to 16 hours. Next, within the
snapshot network, we utilized the Louvain algorithm [25], implemented in Python’s Networkx
library, to derive the optimal communities. Following that, we assessed these obtained com-
munities by employing our scoring function on both local and global levels, which incorporates
various values of ζ. ζ acts as a weight factor that balances smoothness and Mosaic Modularity.
The optimal window size corresponds to the maximum value of Q∗ with a specific ζ.

By observing the right panel of Figure 8, we can determine that smaller window sizes yield
higher values for Q∗ as ζ approaches 0. Conversely, larger window sizes result in the maximum
value of Q∗ as ζ approaches 1. When considering the specific value of ζ = 0.5, we find that the
majority of values hover around 0.45. This indicates that the Mosaic scoring function shares
a limitation with Modularity, known as degeneracy. In other words, there are various distinct
partitions that produce modularities so similar that heuristics cannot differentiate between
them.

1http://www.sociopatterns.org/

19

Figure 8: Sociopatterns Primary School: In the left panel, the link
stream and its aggregated static network is visualized, with colors indi-
cating the pupil’s class. The center panel shows the static aggregated
network. The right panel presents the results of the scoring function Q∗,
computed using the Louvain algorithm on a snapshot of size ∆, high-
lighting the impact of the parameter ζ on the optimal partitioning.

9 Conclusion

When addressing optimization problems rooted in real-world scenarios within computer sci-
ence, the typical approach commences with formulating the problem within a mathematical
framework. Subsequently, algorithms are sought out to solve this problem efficiently. Finally,
researchers assess the efficacy of their proposed methodology by comparing it against established
ground truths. In our study on link stream community detection, we primarily concentrate on
the initial and final stages of the optimization process. Initially, we define the problem mathe-
matically and put forth a quality function to optimize it. Subsequently, we extend our efforts
to generate a benchmark that establishes a dependable ground truth, allowing for the accurate
evaluation of future algorithms’ quality based on it.

Further efforts can be devolved into refining or modifying the Mosaic scoring function in
terms of Modularity and smoothness to overcome possible limitations that emerged after the
comprehensive analysis. For example, we can have the intuition that if we look at the backbone
connectivity of two consecutive communities in time and they share no differences, it is better
to merge them to have a higher inertia.

During the remaining month of my internship, I aim also to contribute to the broader
research community by making my benchmark accessible to the public. This will address the
existing challenge of lacking a reliable ground truth in Modular link streams.

In these five months of exploratory research in this newborn area, I extended Modularity
in six forms and tried five versions of a benchmark. In each case, I started with an intuition,
then implemented it with Python, looking for limitations and advantages. During this period,
I started to believe this quote from Thomas Edison:

“I have not failed 10,000 times—I’ve successfully found 10,000 ways that will not
work.

I would like to thank my supervisors again for meaningful discussions, who gave me guidance
and freedom to work independently and follow my intuition. For these reasons, I consider the
internship a truly enriching experience that made me academically and personally grow.

20

References

[1] M. Newman, Networks. Oxford university press, 2018.

[2] A.-L. Barabási, “Network science,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 371, no. 1987, p. 20120375, 2013.

[3] B. Krishnamurthy and J. Wang, “On network-aware clustering of web clients,” in Pro-
ceedings of the conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp. 97–110, 2000.

[4] P. Krishna Reddy, M. Kitsuregawa, P. Sreekanth, and S. Srinivasa Rao, “A graph based
approach to extract a neighborhood customer community for collaborative filtering,” in
Databases in Networked Information Systems: Second International Workshop, DNIS 2002
Aizu, Japan, December 16–18, 2002 Proceedings 2, pp. 188–200, Springer, 2002.

[5] P. Holme and J. Saramäki, “Temporal networks,” Physics reports, vol. 519, no. 3, pp. 97–
125, 2012.

[6] M. Latapy, T. Viard, and C. Magnien, “Stream graphs and link streams for the modeling
of interactions over time,” Social Network Analysis and Mining, vol. 8, pp. 1–29, 2018.

[7] N. Gaumont, T. Viard, R. Fournier-S’Niehotta, Q. Wang, and M. Latapy, “Analysis of
the temporal and structural features of threads in a mailing-list,” in Complex Networks
VII: Proceedings of the 7th Workshop on Complex Networks CompleNet 2016, pp. 107–118,
Springer, 2016.

[8] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-varying graphs and
dynamic networks,” International Journal of Parallel, Emergent and Distributed Systems,
vol. 27, no. 5, pp. 387–408, 2012.

[9] J. Saramäki, M. Kivelä, and M. Karsai, “Weighted temporal event graphs,” Temporal
Network Theory, pp. 107–128, 2019.

[10] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of
complex weighted networks,” Proceedings of the national academy of Sciences, vol. 101,
no. 11, pp. 3747–3752, 2004.

[11] S. Fortunato, “Community detection in graphs,” Physics reports, vol. 486, no. 3-5, pp. 75–
174, 2010.

[12] M. Girvan and M. E. Newman, “Community structure in social and biological networks,”
Proceedings of the national academy of sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[13] M. E. Newman, “Fast algorithm for detecting community structure in networks,” Physical
review E, vol. 69, no. 6, p. 066133, 2004.

[14] M. E. Newman, “Modularity and community structure in networks,” Proceedings of the
national academy of Sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[15] G. Rossetti and R. Cazabet, “Community discovery in dynamic networks: a survey,” ACM
computing surveys (CSUR), vol. 51, no. 2, pp. 1–37, 2018.

[16] M. Coscia, F. Giannotti, and D. Pedreschi, “A classification for community discovery
methods in complex networks,” Statistical Analysis and Data Mining: The ASA Data
Science Journal, vol. 4, no. 5, pp. 512–546, 2011.

[17] J. Yang and J. Leskovec, “Defining and evaluating network communities based on ground-
truth,” in Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, pp. 1–8,
2012.

[18] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defining and identifying
communities in networks,” Proceedings of the national academy of sciences, vol. 101, no. 9,
pp. 2658–2663, 2004.

[19] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing community structure
identification,” Journal of statistical mechanics: Theory and experiment, vol. 2005, no. 09,
p. P09008, 2005.

[20] S. E. Schaeffer, “Graph clustering,” Computer science review, vol. 1, no. 1, pp. 27–64,
2007.

[21] T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly, “Metrics for community
analysis: A survey,” ACM Computing Surveys (CSUR), vol. 50, no. 4, pp. 1–37, 2017.

[22] P. Van Mieghem, Graph spectra for complex networks. Cambridge University Press, 2010.

[23] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner,
“On modularity clustering,” IEEE transactions on knowledge and data engineering, vol. 20,
no. 2, pp. 172–188, 2007.

[24] A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in very large
networks,” Physical review E, vol. 70, no. 6, p. 066111, 2004.

[25] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of commu-
nities in large networks,” Journal of statistical mechanics: theory and experiment, vol. 2008,
no. 10, p. P10008, 2008.

[26] S. Fortunato and M. Barthelemy, “Resolution limit in community detection,” Proceedings
of the national academy of Sciences, vol. 104, no. 1, pp. 36–41, 2007.

[27] R. Guimera, M. Sales-Pardo, and L. A. N. Amaral, “Modularity from fluctuations in
random graphs and complex networks,” Physical Review E, vol. 70, no. 2, p. 025101, 2004.

[28] T. Aynaud, E. Fleury, J.-L. Guillaume, and Q. Wang, “Communities in evolving networks:
definitions, detection, and analysis techniques,” Dynamics on and of complex networks,
volume 2: applications to time-varying dynamical systems, pp. 159–200, 2013.

[29] T. Hartmann, A. Kappes, and D. Wagner, “Clustering evolving networks,” Algorithm
engineering: Selected results and surveys, pp. 280–329, 2016.

[30] N. Dakiche, F. B.-S. Tayeb, Y. Slimani, and K. Benatchba, “Tracking community evolution
in social networks: A survey,” Information Processing & Management, vol. 56, no. 3,
pp. 1084–1102, 2019.

[31] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution of communities in
dynamic social networks,” in 2010 international conference on advances in social networks
analysis and mining, pp. 176–183, IEEE, 2010.

[32] F. Folino and C. Pizzuti, “Multiobjective evolutionary community detection for dynamic
networks,” in Proceedings of the 12th annual conference on Genetic and evolutionary com-
putation, pp. 535–536, 2010.

[33] C. Shi, P. S. Yu, Z. Yan, Y. Huang, and B. Wang, “Comparison and selection of objective
functions in multiobjective community detection,” Computational Intelligence, vol. 30,
no. 3, pp. 562–582, 2014.

[34] R. K. Darst, C. Granell, A. Arenas, S. Gómez, J. Saramäki, and S. Fortunato, “Detection
of timescales in evolving complex systems,” Scientific reports, vol. 6, no. 1, p. 39713, 2016.

[35] S. Fortunato and D. Hric, “Community detection in networks: A user guide,” Physics
reports, vol. 659, pp. 1–44, 2016.

[36] T. Viard, M. Latapy, and C. Magnien, “Computing maximal cliques in link streams,”
Theoretical Computer Science, vol. 609, pp. 245–252, 2016.

[37] A. Baudin, M. Danisch, S. Kirgizov, C. Magnien, and M. Ghanem, “Clique percolation
method: memory efficient almost exact communities,” in Advanced Data Mining and Appli-
cations: 17th International Conference, ADMA 2021, Sydney, NSW, Australia, February
2–4, 2022, Proceedings, Part II, pp. 113–127, Springer, 2022.

[38] A. Baudin, C. Magnien, and L. Tabourier, “Faster maximal clique enumeration in large
real-world link streams,” arXiv preprint arXiv:2302.00360, 2023.

[39] T. Viard, C. Magnien, and M. Latapy, “Enumerating maximal cliques in link streams with
durations,” Information Processing Letters, vol. 133, pp. 44–48, 2018.

[40] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge, “Enumerating maximal cliques
in temporal graphs,” in 2016 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pp. 337–344, IEEE, 2016.

[41] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge, “Adapting the bron–kerbosch
algorithm for enumerating maximal cliques in temporal graphs,” Social Network Analysis
and Mining, vol. 7, pp. 1–16, 2017.

[42] M. Bentert, A.-S. Himmel, H. Molter, M. Morik, R. Niedermeier, and R. Saitenmacher,
“Listing all maximal k-plexes in temporal graphs,” Journal of Experimental Algorithmics
(JEA), vol. 24, pp. 1–27, 2019.

[43] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal multiscale complexity
in networks,” nature, vol. 466, no. 7307, pp. 761–764, 2010.

[44] N. Gaumont, C. Magnien, and M. Latapy, “Finding remarkably dense sequences of contacts
in link streams,” Social Network Analysis and Mining, vol. 6, pp. 1–14, 2016.

[45] N. Gaumont, F. Queyroi, C. Magnien, and M. Latapy, “Expected nodes: A quality function
for the detection of link communities.,” in CompleNet, pp. 57–64, 2015.

[46] L. Peel, D. B. Larremore, and A. Clauset, “The ground truth about metadata and com-
munity detection in networks,” Science advances, vol. 3, no. 5, p. e1602548, 2017.

[47] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing community
detection algorithms,” Physical review E, vol. 78, no. 4, p. 046110, 2008.

[48] G. Rossetti, “: graph benchmark handling community dynamics,” Journal of Complex
Networks, vol. 5, no. 6, pp. 893–912, 2017.

[49] E. Abbe, “Community detection and stochastic block models: recent developments,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 6446–6531, 2017.

[50] C. Lee and D. J. Wilkinson, “A review of stochastic block models and extensions for graph
clustering,” Applied Network Science, vol. 4, no. 1, pp. 1–50, 2019.

[51] U. Brandes, M. Gaertler, and D. Wagner, “Experiments on graph clustering algorithms,” in
Algorithms-ESA 2003: 11th Annual European Symposium, Budapest, Hungary, September
16-19, 2003. Proceedings 11, pp. 568–579, Springer, 2003.

[52] C. Granell, R. K. Darst, A. Arenas, S. Fortunato, and S. Gómez, “Benchmark model
to assess community structure in evolving networks,” Physical Review E, vol. 92, no. 1,
p. 012805, 2015.

[53] M. Bazzi, L. G. Jeub, A. Arenas, S. D. Howison, and M. A. Porter, “A framework for the
construction of generative models for mesoscale structure in multilayer networks,” Physical
Review Research, vol. 2, no. 2, p. 023100, 2020.

[54] N. Sengupta, M. Hamann, and D. Wagner, “Benchmark generator for dynamic overlap-
ping communities in networks,” in 2017 IEEE International Conference on Data Mining
(ICDM), pp. 415–424, IEEE, 2017.

[55] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet: a framework for
analyzing communities and their evolutions in dynamic networks,” in Proceedings of the
17th international conference on World Wide Web, pp. 685–694, 2008.

[56] R. Cazabet, S. Boudebza, and G. Rossetti, “Evaluating community detection algorithms
for progressively evolving graphs,” Journal of Complex Networks, vol. 8, no. 6, p. cnaa027,
2020.

[57] S. M. Ross, Introduction to probability models. Academic press, 2014.

[58] T. Aynaud and J.-L. Guillaume, “Multi-step community detection and hierarchical time
segmentation in evolving networks,” in Proceedings of the 5th SNA-KDD workshop, vol. 11,
2011.

[59] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton, M. Quaggiotto,
W. Van den Broeck, C. Régis, B. Lina, et al., “High-resolution measurements of face-
to-face contact patterns in a primary school,” PloS one, vol. 6, no. 8, p. e23176, 2011.

[60] L. Tang and H. Liu, “Graph mining applications to social network analysis,” Managing
and mining graph data, pp. 487–513, 2010.

[61] B. Abrahao, S. Soundarajan, J. Hopcroft, and R. Kleinberg, “A separability framework for
analyzing community structure,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 8, no. 1, pp. 1–29, 2014.

[62] P. Pons and M. Latapy, “Computing communities in large networks using random walks,”
in Computer and Information Sciences-ISCIS 2005: 20th International Symposium, Istan-
bul, Turkey, October 26-28, 2005. Proceedings 20, pp. 284–293, Springer, 2005.

[63] M. Rosvall and C. T. Bergstrom, “Multilevel compression of random walks on networks
reveals hierarchical organization in large integrated systems,” PloS one, vol. 6, no. 4,
p. e18209, 2011.

[64] V. Zlatić, A. Gabrielli, and G. Caldarelli, “Topologically biased random walk and commu-
nity finding in networks,” Physical Review E, vol. 82, no. 6, p. 066109, 2010.

[65] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect com-
munity structures in large-scale networks,” Physical Review E, vol. 76, no. 3, p. 036106,
2007.

[66] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi, “Demon: a local-first discovery
method for overlapping communities,” in Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 615–623, 2012.

A Community definitions

• Vertex similarity: Communities are often presumed to be clusters of vertices that share
similarities. One approach to determining such similarities is to calculate the distance
between every pair of vertices based on a chosen reference property.

• Local definition: The community can be seen as a relatively independent entity distinct
from the larger network as a whole to some degree. Several methods are employed to
identify communities on a local level, including complete mutuality, reachability, vertex
degree, and assessing internal cohesion versus external cohesion [60].

• Global definition: A community corresponds to a structure of a network composed of
nodes densely connected together and more sparsely connected to the rest of the network.
Based on this well-known definition of a non-overlapping community, we can write: Con-
sider the network graph G(V ,E). Assume the vertices’ sets C1, · · · , Ck meet the following
conditions:

C1 ∪ C2 ∪ · · · ∪ Ck = G

Ci ∩ Cj = ∅,∀i ̸= j

Pr(VCi
, VCi

) > Pr(VCi
, VCj

),∀i ̸= j

Then, C = C1, · · ·Ck is a partition of network G. Each set Ci represents a community
in the network. Pr(VCi

, VCi
) indicates the probability that two vertices inside Ci have

edges. Pr(VCi
, VCj

) indicates the probability that there exist edges between Ci and Cj.

B Other notable community detection methods

Random-walk-based algorithms have demonstrated their effectiveness in identifying commu-
nities that closely resemble the ground truth communities [61]. Pons et al. [62] introduced a
hierarchical agglomerative algorithm calledWalkTrap, which utilizes random walks to measure
vertex similarity and partitions the network into non-overlapping communities. Additionally,
Infomap, proposed by Rosvall & Bergstrom [63], allows for the discovery of hierarchical struc-
tures in networks by compressing a description of a random walker to represent actual flow in
the networks. A variant of this technique, known as biased random walk [64], has also been
employed for community detection.

Another notable research approach involves the label propagation method [65], which
simulates the spread of labels among network vertices by establishing rules. For instance,
the DEMON algorithm [66] allows each vertex to democratically vote for the communities it
observes in its local view of the global system using a label propagation algorithm. Subsequently,
these local communities are merged into a global collection.

C Proof of Mosaic Modularity and Static Modularity

Equivalence

Theorem 3. For a link stream L = (V,E, T) with atemporal communities, the Mosaic Modu-
larity, at any level, can be simplified to static modularity.

The proof of this theorem focuses on global mosaic modularity. However, similar arguments
apply to other forms of mosaic modularity, resulting in an equivalence be- tween all levels of
mosaic modularity and static modularity.

Proof. The equation for global Mosaic Modularity is expressed as:

QMM =
1

2|E|
∑
c∈C

∑
(i,j)∈V 2

c

Wij|Pc −
|Pc|
|TL|

kikj
2|E|
|TL

In the absence of temporal dynamics in the link stream, each Mosaic community c exists
throughout the entire time domain T of L. This allows us to simplify the formula by setting
|Pc| = |TL|:

QMM =
1

2|E|
∑
c∈C

∑
(i,j)∈V 2

c

Wij|TL
− kikj

2|E|
|TL

To further simplify the equation and transform it into a node-based formulation, we re-
place the first two summations with a delta function since each node is assigned to only one
community within its time cycle:

QMM =
1

2|E|
∑

(i,j)∈V 2

[Wij −
kikj
2|E|

]δ(ci, cj)

where ci and cj represent the group memberships of nodes i and j respectively.

D Proof of Local Mosaic Modularity and Average Mod-

ularity Equivalence

Theorem 4. The Local Mosaic Modularity is equal to the average modularity, where the weight
assigned to each snapshot is the total number of edges in that particular snapshot.

Proof. Starting with the definition of local Mosaic Modularity, we can express it as follows:

QMM =
1

2|E|
∑
c∈C

∑
(i,j)∈V 2

c

Wij|Pc −
kikj
2m
|Pc

If we categorize the link stream into a set of mutually exclusive sets {π1, π2, · · · , πR}, where
communities within each set share a period Pc, we can rewrite the formula as follows:

QMM =
1

2|E|

R∑
r=1

∑
c∈πr

∑
(i,j)∈V 2

c

Wij|Pc −
kikj
2m
|Pc

Then, we name Pπr as shared Pc for communities like c inside πr. Next, we combine the
sums based on the fact that within each period Pπr , nodes do not change their communities:

QMM =
1

2|E|

R∑
r=1

∑
(i,j)∈V 2

πr

(Wij|Pπr
− kikj

2m
|Pπr

)δπr(ci, cj)

We bring coefficient two inside the sum and define wr as the number of edges within πr. We
can then multiply it as follows:

QMM =
1

|E|

R∑
r=1

ωr

2m

∑
(i,j)∈V 2

πr

(Wij|Pπr
− kikj

2m
|Pπr

)δπr(ci, cj)

Simplifying further, we obtain the following:

QMM =
1

|E|

R∑
r=1

ωrQπr

Since |E| =
∑R

r=1wr, we can rewrite the equation as:

QMM =
1∑R

r=1wr

R∑
r=1

ωrQπr ≡ Qavg

E Scoring functions

Flake-ODF

Normalized cut

Conductance

Max-ODF

AVG-ODF

Expansion

Cut Ratio

TPR

FOMD

Avg Deg

Edges inside

Internal density

Internal connectivity

External connectivity

Modularity

Separability

Density

Cohesiveness

Clustering coefficient

Edges out

Volume

Network model

Topological metrics

Figure 9: Scoring functions: scoring based on connectivity(internal, ex-
ternal, mixed) or a network model [17, 21]

A summary of these quality functions based on connectivity is represented in table 1.

Internal Connectivity

Algorithm Formula

Internal density
|Einter

Ci
|(|VCi

|
2

)
Edge inside |Einter

ci
|

Average internal degree 2
|Einter

ci
|

|VCi
|

Triangle Participation ratio
(TPR)

Fraction of nodes
in Ci belong to a triad

External Connectivity
Algorithm Formula

Expansion
|Eintra

Ci
|

|VCi
|

Cut ratio
|Eintra

Ci
|(|VCi

|
2

)

Mixed Connectivity

Algorithm Formula

Conductance
|Einter

Ci
|

2|Einter
Ci
|+ |Eintra

Ci
|

Normalized Cut
|Eintra

Ci
|(|VCi

|
2

)
Maximum ODF maxu∈VCi

|(u, v) ∈ ECi
: v /∈ VCi

|
d(u)

Average ODF 1
|VCi

|
∑

u∈VCi

|(u, v) ∈ ECi
: v /∈ VCi

|
d(u)

Flake ODF
|u : u ∈ VCi

, |(u, v) ∈ ECi
: v ∈ VCi

| < d(u)/2|
|VCi
|

Table 1: Connectivity quality functions for non-overlapping community
detection algorithms in static graphs

	Context
	Link stream
	Mathematical Framework
	Link stream representations

	Community detection
	Community detection in static networks
	Community detection in snapshots
	Community detection in link streams

	Network Benchmarks
	Static Network Benchmarks
	Temporal Network Benchmarks

	Mosaic Framework
	Mosaic Link Stream Benchmark
	Mosaic partitioning generation
	Generating edges

	Mosaic evaluation score
	Mosaic Modularity
	Mosaic smoothness

	Results
	Mosaic Modularity and Static Modularity Equivalence
	Local Mosaic Modularity and Average Modularity Equivalence in Snapshots
	Testing Mosaic Modularity on Link stream Benchmark
	Testing the Mosaic scoring function on Real world Dataset

	Conclusion
	Community definitions
	Other notable community detection methods
	Proof of Mosaic Modularity and Static Modularity Equivalence
	Proof of Local Mosaic Modularity and Average Modularity Equivalence
	Scoring functions

