SPATIAL DATA ANALYSIS

Spatial clustering

- Clustering: finding groups of similar observations
- If the data has a spatial structure, we might want the clusters to be contiguous in space
- =>Add a spatial constraint

https://geographicdata.science/book/notebooks/10_clustering_and_regionalization.html

AGGLOMERATIVE CLUSTERING

• Define a notion of distance between two sets of points, e.g.

- Minimal distance between sets elements
- Average distance between elements

• • • • •

- Start with each item in its own cluster
- While nb_cluster > I
 - Merge the two closest cluster

DENDROGRAM

https://www.statisticshowto.com/hierarchical-clustering/

CLUSTER DISTANCES

Choose a distance function

- Euclidean distance
- Cosine distance
- ٠...
- Choose a cluster distance strategy
 - **single** uses the minimum of the distances between all observations of the two sets.
 - **complete** or 'maximum' linkage uses the maximum distances between all observations of the two sets.
 - **average** uses the average of the distances of each observation of the two sets.
 - ward minimizes the variance of the clusters being merged. (Within-Cluster Sum of Squares)
 - $\Delta WCSS = WCSSnew (WCSSC_1 + WCSSC_2)$
 - Similar objective than k-means, but more greedy

- To discover spatial clusters, we want to allow merging only spatially contiguous clusters
- Solution: Connectivity matrix
 - A graph describing what element is a **neighbor** of another element.
 - Can merge only clusters with at least one edge between clusters

Connectivity matrix (Binary graph)

- Contiguity:
 - Contact between surface
 - Distance < threshold
- KNN (K-nearest-neighbors)
- Spatial Weights Matrix (Weighted graph)
 - Put weights on edges
 - Inverse of the distance
 - Inverse of the squared distance...
 - Row normalized: sum of weights of neihgbors=1

- Other methods
 - K-means with constraints
 - Multiple variants
 - DBSCAN: principle of a graph with threshold...

SPATIAL AUTOCORRELATION Global

- Suppose you have attributes on observations
 - Binary (vote FOR/AGAINST, has covid cases or not, etc.)
 - Multi-label (candidate, type of apartments, etc.)
- Are those points distributed randomly/independently?
 - Or is there a correlation between the position of a point and the ones close to it
- Correlation between a variable and itself in space
 - =>Spatial autocorrelation

Using a Spatial Weights Matrix *w_{ij}*: weight of edge (*i*, *j*)

• Spatial lag:
$$y_i^{sl} = \sum_j w_{ij} y_j$$

- With y_i the variable of interest
- Weighted average of neighbors

LINEAR SPATIAL AUTOCORRELATION

- Compute Pearson's linear correlation between
 - Value for observation x
 - Spatial lag for observation x
- In practice, people rather use Moran's I
 - Generalization to take into account:
 - Different # of neighbors
 - Different weights

MORAN'S I

$$I = \frac{n}{\sum_{i} \sum_{j} w_{ij} z_{i} z_{j}} \frac{\sum_{i} \sum_{j} w_{ij} z_{i} z_{j}}{\sum_{i} z_{i}^{2}}$$

- w_{ij} : weight of edge (i, j)
- z_i : value at i, standardized
- n: nb. of observations

MORAN'S PLOT

Plot relation between standardized values

Moran's I is the slope of a linear regression on this plot

SPATIAL AUTOCORRELATION Local

- Single scores are often misleading
- We can look at the details:
 - Where are positive/negative autocorrelations?
 - Where is the autocorrelation significant?
- Introduce LISA
 - Local Indicators of Spatial Association

LISA

• I)Compute significance: Moran's li

$$I_{i} = \frac{z_{i}}{m_{2}} \sum_{j} w_{ij} z_{j} ; m_{2} = \frac{\sum_{i} z_{i}^{2}}{n}$$

- m_2 : variance of the variable of interest

- z_i : standardized value

- Positive value: positive spatial correlation at this point
- Negative value: negative spatial correlation at this point
- 0 or close to 0: no significant spatial autocorrelation

Brexit vote example (Support for Brexit)

HH: Hot spots
LL: Cold spots
LH: doughnuts
HL: diamonds in the rough

https://geographicdata.science/book/ notebooks/07_local_autocorrelation.html

Moran Cluster Map 22

TEMPORAL DATA ANALYSIS

TIME SERIES

- Consider a time series
 - A variable evolving with time
 - Price of something, etc.
- Multivariate time series
 - Multiple time series for multiple variables
 - Price of multiples cryptocurrencies
 - For a pro-player, statistics of game-performance...
 - Etc.

- Intuition: are values at time t correlated with values at $t + \Delta_t$
 - With Δ_t a shift
- Objective a bit different from spatial
 - Not an evaluation of similar to "neighbors"
 - But is there a typical "lag" at which we observe repeated patterns

- Typical approach: linear correlation (Pearson) between
 - The time series
 - The shifted time series, with shift Δ_t

- Finding seasonal/periodic patterns:
 - ACF: AutoCorrelation function: autocorrelation score for each lag

CLUSTERING

• Clustering multiple time series

- Number of items sold per week for different products
 - Find products with a similar selling lifecycle
- If time series are well-aligned
 - Each time series is a vector
 - Use k-means. Time series having similar values at the same time will be clustered together
- Problem if some time series start at a different time, or last longer

Without time warping

With time warping

30

- Find an optimal alignment
 - Non-linear transformation
- Step I: build a matrix of distance between each timestep in each time series
 - Times series of length *m* and *n*
 - Matrix of size $m \times n$

- Values in the matrix are "penalties"
- Find an optimal path in this matrix:
 - I)Minimize the sum of penalties
 - 2)continuous line
 - 3)monotonous (never go up)

FINDING OPTIMAL PATH

- Finding an optimal path is costly for long time-series
- Exact approach: Dijkstra algorithm formulation
 Improved by pruning
- Greedy approaches: FastDTW
 - Add constraint, acceptable lost, coarsening...

Without time warping

With time warping

37

ANOMALY DETECTION

- We would like to find anomalous points in a time series
- General principle of anomaly detection:
 - Make a "prediction" of the expected value
 - An anomaly is a point that differ strongly from a prediction
- Simplest approach: moving average

EXAMPLE

MOVING AVERAGE ANOMALY DETECTION

- I)Compute a moving average to smooth the time series
 - Choose an appropriate time window $\Delta_t \dots$
- For a point at *t*, we have a reference: all points in $[t \frac{\Delta_t}{2}, t + \frac{\Delta_t}{2}]$
- Use a statistical test to evaluate exceptionality
 - For instance, 3 standard deviations from the mean, assuming normality...

MOVING AVERAGE ANOMALY DETECTION

Do not work in complex cases

Needs better estimate of expected value

TIME SERIES DECOMPOSITION

- We assume that a time series is the addition of 3 factors:
 - I)A **trend**. This is the main global change of the variable
 - e.g.: smartphone brand sales: adoption by more people, more or less popular, etc.
 - 2)A seasonal component
 - e.g.: every Christmas, people buy more smartphones
 - 3) A **reminder**: what is not explained by those two factors

HOWTO

- Classical decomposition of time series
 - Choose a relevant time scale Δ_t , e.g., year, month... (e.g., Using ACF plot)
- 1)Compute trend using a sliding window Δ_t
- 2)Compute the detrended time series
 - Time series trend
- 3)Compute the average season, i.e., average values on each window Δ_t
- 4)Remove the average season from the detrended time series
 - What remains is the reminder/residuals

HOWTO

- Classical decomposition of time series
 - One can evaluate the relevance of the Δ_t period by computing the similarity between seasons
- We can replace the additive model with a multiplicative model
 y_t = T_t + S_t + R_t
 y_t = T_t × S_t × R_t

HOWTO

More advanced approaches exist

- STL decomposition
- SARIMA (ARIMA with seasonality)
- Facebook Prophet
 - $y_t = T_t + S_t + H_t + R_t$
 - H_t corresponds to holidays or special events
 - T is a linear/logistic function with change points, to predict the future
 - S is a Fourier series, i.e., a sum of sinusoidal signals
 - The model parameters are fitted using a method similar to likelihood maximization (remember Gaussian mixtures?)