FEATURE SELECTION

FEATURE SELECTION

- · Objective: select a subset of variables that we keep
 - Discard useless or less informative ones
- · A common preprocessing step in data with many variables
 - In ML, "more is better" is generally true for observations
 - Not for variables

WHY FEATURE SELECTION

Too many variables

- e.g., Health data: hundreds of variables
- In theory, in ML, more is better
 - Not true in practice: many methods work less efficiently with too many variables
 - When the ratio between the number of variables and the number of observations is high, spurious correlations => Overfitting

Redundant variables

- High correlation
 - Hinder interpretability
 - Make learning harder (more variables=>harder task)

FEATURE SELECTION VS FEATURE EXTRACTION

- Feature extraction: PCA
 - Generate new features, combinations of the original ones
 - Advantages:
 - Eliminate linear correlation
 - Control the amount of information lost
 - Drawbacks:
 - Loss of interpretability
 - Linear combinations can erase important information
- Feature selection
 - Keep the original features unchanged

FEATURE SELECTION

- Embedded feature selection
 - Mechanism in an ML method performs feature selection during the learning process
 - → =>Regularization
 - Lasso
 - > => Tree-based methods: implicit feature selection
 - A feature which is never useful will never be selected, thus never be used
- Filter methods
 - Common preprocessing step
- Wrapper methods
 - More efficient but slow

FILTER METHODS

- Correlation filtering
 - Compute correlation between variables
 - Keep only one of each set of highly correlated variables
 - Remove redundancy
 - Example method: find sets of correlated variables by using community detection on a graph whose edges correspond to high correlation values
 - Which one to keep? Easier to interpret or more efficient single predictor of the target...
- · In case of a huge number of variables, Relevance filtering
 - Compute correlation/similarity between each variable and the target
 - Correlation, Mutual Information, etc.
 - Keep top-k

WRAPPER METHODS

- RFE: Recursive Feature Elimination
- · Given a model and a notion of feature importance
 - Ad hoc or external, e.g., SHAP values
- · Loop:
 - ► I)Train the model on (remaining) features
 - 2) Remove the feature(s) of lower importance

TO SUM-UP

- Feature selection is useful for interpretability
- But also for model performance!
 - Too many variables often hurt the training process
 - Noise
 - Algorithms struggle to reach a good solution due to the size of the solution space
 - Redundancy hurts many models
 - > =>Most ML models do not find the global optimum, thus any unnecessary difficulty will result in reaching a poorer local maximum
 - > => With more "useless" variables, more chances of overfitting
 - Spurious correlations...

IMBALANCED DATASETS

CLASS IMBALANCE

- Context: classification
 - Some classes are more frequent than others
 - e.g., binary: credit card fraud detection, COVID detection, etc.
 - e.g., multiclass: (hyperthyroid, hypothyroid, normal)
- Problems
 - Most objective functions are of the form $\min_{i} \sum_{i} \ell(\hat{y}_{i}, y_{i})$
 - =>cross-entropy, Gini/Entropy on decision trees, etc.
 - So each positive example counts as much as each negative example
 - => Catastrophic errors (better to predict always the majority class)
 - Common evaluation scores are misleading
 - Accuracy, Precision, F1...

SOLUTIONS

Undersampling

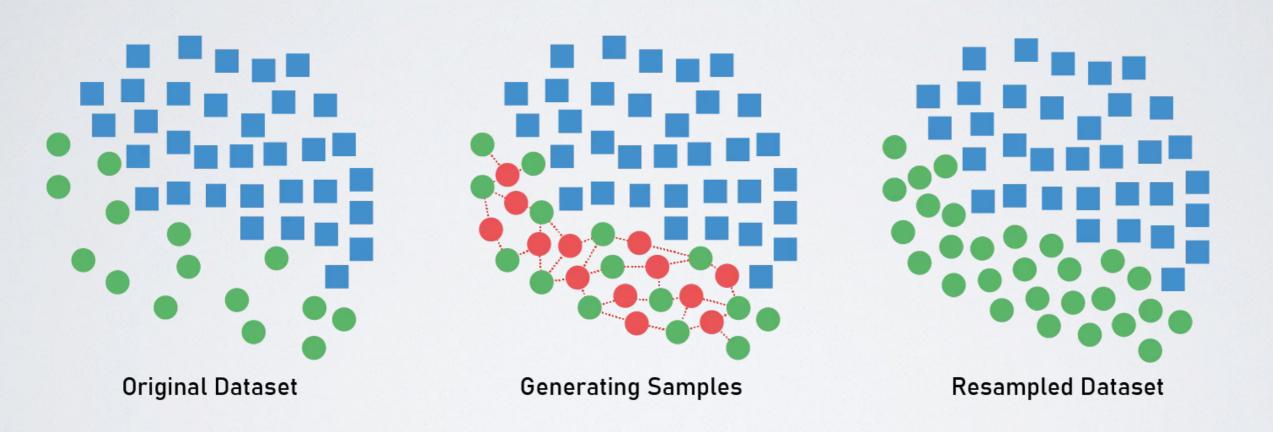
- If there is enough data
 - Take a sample from the majority class of a similar size to the minority class
 - e.g., resemple to 70/30, or 50/50
 - =>Treat as a hyperparameter (validation set to evaluate the best undersampling ratio
 - 50/50 might remove too much data, or bias the model too much

• SMOTE (Synthetic Minority Over-Sampling Technique)

- For cases in which data is scarce
- Instead of removing instances, **create** synthetic ones for the minority class.
- For tabular data: $x_{\text{new}} = x + \lambda(x_{nn} x), \quad \lambda \in [0,1]$
 - With x an existing data point and x_{nn} a nearest neighbor of that point in the minority class
 - =>Create a new point in-between two existing points

SOLUTIONS

Synthetic Minority Oversampling Technique



SOLUTIONS

- Modifying the loss
 - > =>Increase the weight of errors in the rare class

$$L = \sum_{i=1}^{n} \ell(\hat{y}_{i}, y_{i}) = \sum_{i=1}^{n} w_{y_{i}} \ell(\hat{y}_{i}, y_{i})$$

Typical approach: Inverse class frequency

$$w_c = \frac{n}{k \cdot n_c}$$

- n: total number of samples
- k: number of classes
- n_c number of samples in class c

REGRESSION INBALANCE

- · Imbalance is not only a problem for classification
 - =>It also exists for regression
- The distribution of target values is skewed, with some values being rare
 - Earthquake magnitude (large earthquakes are rare)
 - Apartment prices (very expensive apartments are rare)
 - Etc.
- For the same reason as before, errors made on rare values are mostly ignored

REGRESSION INBALANCE

Most loss functions are global scores

$$\min \sum_{i} \ell(\hat{y}_i, y_i)$$

- > =>99% of data points in the "normal" range
 - =>The model optimizes mostly for this range

• Solutions:

- Undersampling dense regions (if enough data)
- SMOTER (SMOTE for Regression)
 - Create synthetic data only in sparse regions
- Weighted loss

ANOMALY DETECTION

CONCEPT

- · In a dataset, we want to discover anomalies
- · An anomaly can be an error
 - Outliers
- · More often, an anomaly can be what we are searching for
 - Fraud detection, Network intrusion, Equipment failure, Quality control, etc.

CONCEPT

ANOMALY VS CLASSIFICATION

- Anomaly detection can sometimes be treated as a classification problem
 - We have an extensive dataset of anomalies
 - Labelled anomalies
 - All possible types of anomalies have already been observed
 - Otherwise, we won't be able to recognize never-before-seen anomalies
 - =>Treat as highly unbalanced problem
- When it is not the case, we need to use unsupervised approaches

ANOMALY: CORE IDEA

- · Intuition: An anomaly is what is not normal
 - We need first to define what is normal in our data, and what is not normal is an anomaly

Implementations:

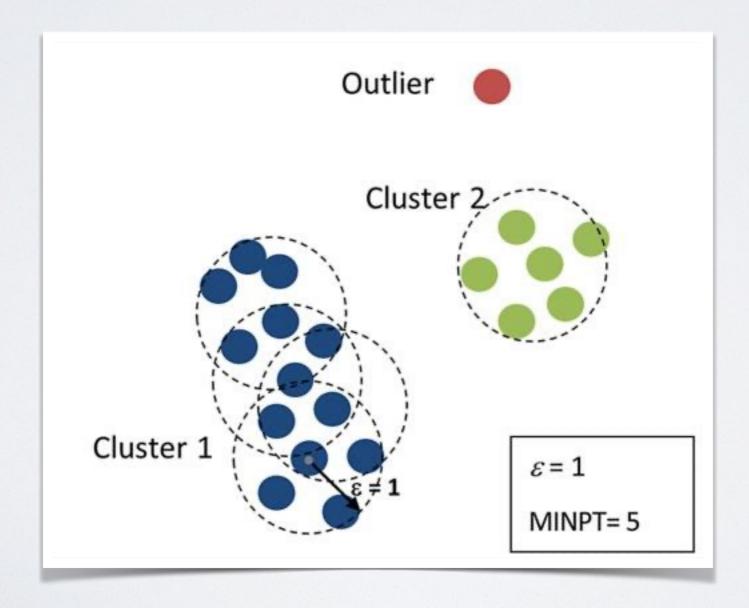
- Density-based => Anomalies are in low-density regions
 - => e.g., noise obtained using DBSCAN clustering method
- ▶ Isolation/distance => Anomalies are far from any normal point
 - =>Isolation forest (see later)
- Model-based => An anomaly is what a statistical model of the data cannot predict well
 - Likelihood of points in a Gaussian mixture clustering
- Reconstruction-based => Anomalies are what is no

ANOMALY: CORE IDEA

- · Intuition: An anomaly is what is not normal
 - We need first to define what is normal in our data, and what is not normal is an anomaly
- Implementations:
 - Density-based
 - Model-based
 - Reconstruction-based
 - Isolation/distance

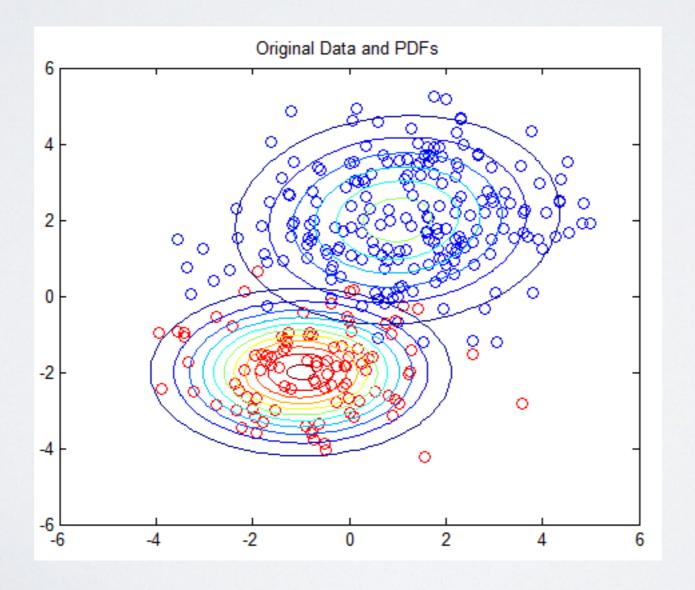
DENSITY-BASED

- Density-based => Anomalies are in low-density regions
 - => e.g., noise obtained using DBSCAN clustering method



MODEL-BASED

- Model-based => An anomaly is what a statistical model of the data cannot predict well
 - Likelihood of points in a Gaussian mixture clustering



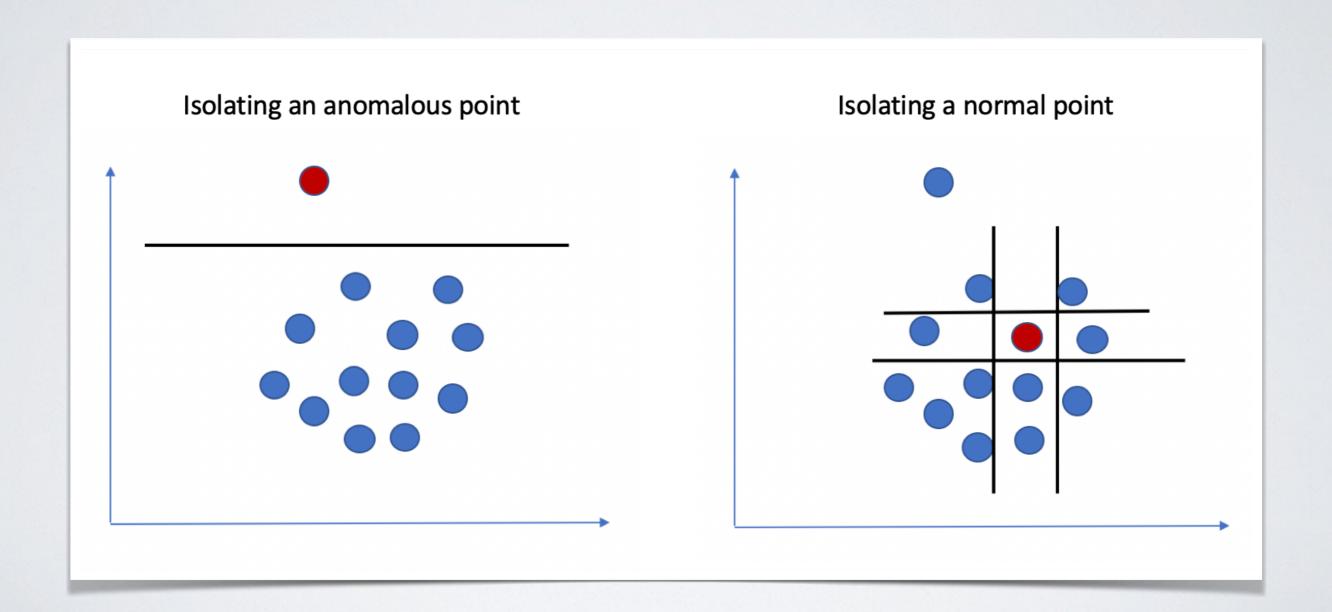
RECONSTRUCTION-BASED

- 1) Use a method that *compresses* the data in a low-dimensional space and then allows for reconstruction
- 2) Anomalies are what is not well reconstructed
- e.g., PCA, NMF...
 - ▶ 1)Tranform into a lower dimensional data
 - 2)transform back into the original space
 - ▶ 3) measure reconstruction error
- e.g., autoencoders
 - Measure reconstruction error

ISOLATION/DISTANCE

- Isolation/distance => Anomalies are far from any normal point
 - kNN distance outliers
 - Compute distance to neighrest points
 - Large distances => Anomaly
 - => Limits: scalability, curse of dimensionality
 - Isolation Forest (iForest)
 - More scalable
 - More robust (noise, curse of dimensionality...)

- Based on many small classification trees, like the random forest algorithm
- Build random trees by
 - Choosing features at random
 - Splitting the feature at random (unlike normal trees)
 - Numeric variable: split on a random value in the range
 - Categorical variable: split by choosing a random category
- · Intuition: anomalies are easier to isolate than normal values



- Parameters:
 - Subsample size
 - Each tree is built on a small subsample (e.g., 256)
 - Stop criteria
 - e.g., each instance in its own leaf, or max_depth
 - Number of trees
 - Typically 200-300
- Algorithm (for each tree)
 - While Stop criteria not reached
 - Pick a variable at random (among those present in the sample)
 - Split at random (among limits present in the sample)
- Anomaly score: average depth in the trees
 - Note that each tree sees only few samples but is used to evaluate each sample

