DATA TRANSFORMATION



DATA TRANSFORMATION

» Our data Is provided in a given form

» Tabular (vectors)
» Network

Time series

» lext

Images

v

v

* o use the full potential of data mining, you might want to
study It from multiple angles

» How to convert from tabular to graph?
» From Graph to Tabular?
» From images/text to tabular (embedding)!

ik



DIMENSIONALITY
REDUCTION

Low dimensionality embedding



DIMENSIONALITY
REDUCTION

» Data Mining objective: understand our data

» We get a dataset composed of many features
- Or worst, complex object (image, sound, graph...)
» How to understand the organization of our data!

» How to perform clustering?



VISUALIZATION

» Your data Is perfectly fine, but you want to inturtively
understand how It Is organized

» Are there groups of similar objects!
» Are my clusters meaningful?
» Is my classification/clustering on some types of elements and not others.



VISUALIZATION

Example: MNIST Dataset
Fach pixel Is a variable

label: 5

label: 5

label: 8

label: 1

label: 6

label: 7

label: 8

label: 9

label: 7

label: 2

label: 8

label: 7

label: 6

label: 8

label: 5

label: 2

label: 8

label: 1

label: 1

label: 6

label: 1

label: 8

label: 5

label: 8

label: 0

label:

label: 5

label: 6

label: 0

label: 8




ng

t-SNE embedd

epoch 1000

999 g
g L
D
- . y
¥ sy

0S

(Z']x

00}~

o
o
4

-100



BURSE OF DIMENSIONAEFSS

* Having hundreds/thousands of attributes Is a problem for data

analysis.

» e.g.: medicine: blood analysis, genomics.. ..
» e.g.: cooking recipes: each column an ingredient...

* We want to reduce the number of attributes while keeping
most of the information

» Also helps with scalability



CORRELATION

» Assume that you have correlated features such as age, height
and weight.

» Redundancy | Computational Inefficiency

- e.g, Decision tree will spend a lot of time choosing between them for no reason

» Risk of overfitting

- noise between correlated variables used to distinguish individuals

» Model interpretability

- e.g,a model will say that y depends on x or w randomly, If x and w correlated

* Dimensionality reduction can create a single variable to
capture what I1s common

» The rest can be lost or captured by another feature,
- Engine horsepower, Car weight, Fuel Consumption
- =>Performance index (horsepower and weight)

- =>FEfficiency score (weight and fuel consumption)
9
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» PCA: Principal Component Analysis

* Defines new dimensions that are linear
combinations of initial dimensions

» Objective: concentrate the variance on some
dimensions
- S0 that we can keep only these ones.
- Those we remove contain low variance, thus low information



M@

» Algorithm:
| 7 240 . . : 350000 -
BRBIRIREERaX(s", & unit vector defining a line |
In the space 250000 -
- That minimizes the variance=>the squared £ 200000 -

distance from all points to that line
150000 -

100000 A

- 2)For d in [2(initial_d)]

» FInd another axis, with two constraints:

- Orthogonal to all previous axis
- Among those, minimizing the variance

= iiie end, keep the first k

dimensions
» Some Information is lost 0
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EHIOOSING COMPONENSS

 How to choose k!

=lae method. .. BIC/AIC. ..
» OR fix beforehand a min threshold of explained variance, e.g.: 80%

- We are fine with losing 20% of information
» |f there I1s a downstream task, cross-validation

Scree Plot

Explained
variance

Component Number



BOMPU IATION IN PRAC TGS

* From standardized dataset X

Eliictnoa |
» [)Compute the Covariance Matrix (X’ X)

- => Linear Correlation Matrix
» 2) Find the eigenvectors of this matrix
- XTX = VAV!
- V:eingenvectors = Pincipal components, A: Eigenvalues, = explained variance

glleihod /:
» Apply SVD matrix decomposition
=Y

- U: left singular vectors. X: diagonal matrix with the singular values, VX:right singular vectors
(the principal components)



BOMPU IATION IN PRAC TGS

» V are the principal components

» Computing the new positions for each observation:
» XV



FC A POPULAREES
* Why 1s PCA popular?

* Similar reasons than linear regression:
» Useful

- Eliminate correlations
» Analytical solutions

- Guarantee to find the global minimum of the objective
- Could be done before modern computers

» Interpretable solution
» Inturtively pleasant

* No reason to consider it ‘better’ than other methods for
demensionality reduction...



NON-LINEAR SITUATIONS
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MANIFOLDS



MANIFOLDS

» Manifolds are another approach to dimensionality reduction

* [ he general principle is to

» | )Define a notion of distance between elements in the original space
» 2)Define a notion of distance between elements in a reduced, target space
» 3)Minimize the difference between distances in original and target space

* In many cases, the process Is honlinear, 1.e., we choose
distances such as

» We care more about preserving the distance for items “close’ in space than for
those “far” from each other

ik



TSNE SpectralEmbedding MDS TruncatedSVD PCA

UMAP
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* MDS: Multi-dimensional Scaling:

» SImply minimize distance between original space and target space
- e.g, d-dimensional forced to 2-dimensional

* How to do It!

» |)Compute all (squared Euclidean) pairwise distances between
tems=>Similarity matrix
- n X f matrix => n x n matrix
- Apply double-centering (remove row and column means)

» 2)Compute PCA on this similarity matrix

* Problems:

- Very costly (nb features=nb elements), n?
- Try to preserve all distances, therefore extremely constrained

Uil
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ISOMAP

B rlation of MDS

» [)We define a graph such as two elements are connected If they are at
distance<threshold. (Alternative: fixed number of neighbors)
- Put a weight on edges=euclidean distance

» 2)Compute a similarity matrix, such as distance = weighted shortest path
distance

» 3)Apply MDS on 1t

* Nlon-linear distances

Isomap (0.58 sec) MDS (3 sec) Spe




1-SNE



1-SNE

» t-SNE : t-distributed stochastic neighbor embedding
* Non-linear dimensionality reduction

* One of the most popular method for visualizing data in low
dimensions

28



SNE

» General principle:

» Define a notion of similarity p;; in the high dimensional space P

- Based on normal distribution
» Define a notion of similarity g;; in the low dimensional space O

- Based on student-t distribution, tends to “exaggerate” differences
» For each point of intial coordinates x; find a new coordinate y; in the lower
dimensional space, such as to minimize the difference between P and Q

ViiPjli ® jl

%



S N E Euclidean
2: i
Normal °
| l I I 0.2 1 l.
» Distance in the original space P g

» To compute how farJ is from i, consider a normal distribution centered in j
with variance o

lx; — ;112
» Mathematically: the raw distance Is given as Sﬁ)l- =e 27
P
i

y Pjli = Y P
k#i "jlk

- Normalizes the similarity by sum of similarity to all other points.
- With proper o, local definition of similarity

30



1-SNE: PERPLEXITY

* [here Is a perplexity parameter o: It controls how much each
point cares more about close neighbors compared with
farther neighbors

» Low o: Preserve mostly local distances
» High 0: Give more importance to long-range distances

- More expensive, more similar to MDS

31



NFLUENCE OF PERPLEXESS
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MNIST - TSNE

MNIST - PCA
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LOW DIMENSIONAL
EMBEDDINGS



EMBEDDINGS

* A recent usage of low dimensional embeddings Is to encode

complex objects as vectors

» Words as Vector => Word2Vec
» Nodes (of graph) as Vectors => Node2Vec
» Documents as Vectors => Doc2Vec

VRS

35



WORD EMBEDDING



WORD EMBEDDING

* Words can be understood as a (very) high dimensional space
» Using One Hot encoding: vocabulary of 1000 words=>[000 columns

» Could we assign a vector In “low dimension”, encoding the
“semantic’ of a word!

» Two words with similar meanings should be close

B



SKIPGRAM

Word embedding
Corpus => Word = vectors
Similar embedding= similar context

Training
Samples

Source Text

-quick brown |fox jumps over the lazy dog. == (the, quick)
(the, brown)

The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)

(brown, fox)

(brown, jumps)

The|quick brown.jumps over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

[http://mccormickml.com/2016/04/ | 9/Wc3>8rd2vec—tutoria|—the—s|<ip—gram—model/]



SKIPGRAM

Output Layer
Softmax Classifier
Hidden Layer Probability that the word at a
Linear Neurons P ——— randomly chosen, nearby

Input Vector =V position is “abandon”

/ AN\ © . “ability”
J ) e —

A 1" in Lhe position

corresponding to the —%
word “ants”

~[o]ofle[o]e]e]o]o]e]

(=]

\ A \ \ '
NN
2 .\\\ i
10,000
positions Lz
300 neurons ———  ..“zone”
10,000
neurons

Output weights for “car”

Word vector for “ants”

I X

300 features

Probability that if you
randomly pick a word
nearby “ants”, that it is “car”

300 features

https://towardsdatascience.com/word2vec-skip3sram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM

Output
Input softmax
2 A
X1 0 Hidden 0 1
x2| 0 N e 0 |y
: h v :
Vector of word i h3 g
@)
X Matrix W |" = X Matrix W’ e |V =
. 2
Xil 1 g_ 1 Y;
' Context matrix
h
Embedding matrix \\_]D
Xvi 0 N-dimension vector 0 |yv

N=embedding size. V=vocabulary size

https://towardsdatascience.com/word2vec-skip4ram-model-part- | -intuition- /86 | 4e4d6e0b



SKIPGRAM
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| https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/]
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https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

SKIPGRAM

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: 1Phone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

[ https://blog.acolyerorg/20 | 6/04/2 | /the-amazing-power-of-word-vectors/|
42


https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

PRE- [ RAINED

« One can train word2vec on their own dataset, but it needs to

be large enough (and Is costly)
» https://radimrehurek.com/gensim/models/word2vec.html

* YOU can use pre-trained embeddings, trained on very large
corpus (Iwitter, Wikipedia...)

» e.g., Glove: https://nlp.stanford.edu/projects/glove/

43


https://nlp.stanford.edu/projects/glove/

USAGE

* Single words=> Use directly vectors

* Short texts=> Weighted average vectors (more welights to
more important words, e.g,, rare words: [ F-IDF...)

* Long texts=> More tricky. Needs BERT/LLM

44



USAGE

SRarAmeters:

» Embedding dimensions d
B eiie <t Size

45



EXTENSIONS

 Note: LLM works in a similar way, but:

» using a deep, transformer architecture instead of a single-layer

* LLM also provide contextual embeddings

» The embedding of a word is different based on the sentence.

46



DEEP LEARNING
AND
EMBEDDINGS



SRALLOV 10O DEES

* Deep neural networks are also commonly used to produce

complex data embedding
» Skipgram/Word2Vec is just particular cases of a general principle

» After each layer of a DNN, items are represented as vectors

» Usually, at some steps, those layers are low-dimensional
» Often, the last step or the middle step
» These can be used as embedding for other tasks

48



SRALLOV 10O DEES
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APPLICATIONS

* Image modification: modity some values of the embedding of
an object (Image, music, graph...) to reconstruct a slightly
different version of It

» Clustering

» Train @ DNN on image classification task, then use clustering on the
embeddings to discover similar images

* \Visualization

» Using Tsne on an embedding, we can have a global view of the organization of

our data
- Music, photos, graphs, books...

50



GRAPH EMBEDDING



GENERIC “SKIPGRAM”

» Algorithm that takes an input:

» The element to embed
» A list of “context’’ elements

jiR@vice as output:

» An embedding with interesting properties
- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

S



DEEPWALK

» Skipgram for graphs:

» | )Generate “sentences’” using random walks
» 2)Apply Skipgram

s Parameters:

» Same as Skipgram
- Embedding dimensions d
- Context size

» Parameters for “sentence’” generation: length of random walks, number of walks
starting from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.



NODE2VEC

» Use biased random walk to tune the context to capture

*what we want™®

» "Breadth first” like RW => local neighborhood (edge probability ?)
» “Depth-first” like RW => global structure ¢ (Communities ?)
» 2 parameters to tune:

- P: bias towards revisiting the previous node
- @ bias towards exploring undiscovered parts of the network

Figure 2: Illustration of the random walk procedure in node2vec.
The walk just transitioned from ¢ to v and is now evaluating its next
step out of node v. Edge labels indicate search biases cv.

L — S

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM.



EHIBEDDING ROLES



BTRUCLVEC/ROLEZVES

(Inturtion)

* In node2vec/Deepwalk, the context collected by RWV contains
the labels of encountered nodes

* Instead, we could memorize the properties of the nodes:
attributes If availlable, or computed attributes (degrees, CC, ...)

« =>Nodes with a same context will be nodes In a same
“position” In the graph

» =>(Capture the role of nodes instead of proximity

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mirfing (pp. 385-394). ACM.
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OBJECTS/VECTORS
TO
GRAPHS



GRAPH<->VECTORS

» Graph Embedding: Graph->Vectors

* What about Vectors->Graphs

» Simple approach: Correlation matrix

» =>Represent the relations between features in a dataset
| )Compute the correlation between all variables(spearman/Pearson)
- 2)Keep only correlations above a threshold (alternative: X% strongest)
- 3)Correlation values can be represented as weights

59



[ TEM-ITEM GRAPH

- lypical application case: Brain signal analysis

» Distance 1s computed as signal correlation on MR, 1.e., regional brain activity
» => [ime series to graph

A Time series B

Association matrix
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[ TEM-ITEM GRAPH

* We can use graphs as an alternative to dimensionality

reduction for visualization

RSN Eproject items In 2D, close items are similar
- Some Impossibllities, e.g., multiple semantics for words (“palm”: part of the hand, tree)
» Networks can also be viewed In 2D and preserve the similarity information

» Approach:
» | )Compute the distance between elements
- Euclidean
- (Cedlile

» 2)Keep as an edge values above a threshold

6|



[ TEM-ITEM GRAPH

Comparison PCA-graph representation

62




FEATURE-FEATURE GRAPH

* Imagine an apartment dataset with variables surface, # rooms,
S

» [tem-tem: apartment as nodes, links represent similar apartments
» Feature-feature: each feature Is a node, edges represent relations/correlation

» Useful in particular when many variables

» Recommendation
» Biological data
» elc.



BACKBONE EXTRACTION

* In some cases, the network created might be too dense to be

analyzed properly

» Too low threshold: everything Is connected
» loo high: disconnected graph, most elements removed

¢ A solution Is to use Backbone extraction

» Methods that retain only the most important edges, based on different
principles
» e.g., https://pypl.org/project/netbone/

64


https://gitlab.liris.cnrs.fr/coregraphie/netbone

BACKBONE EXTRACTION

Boolean Filter

Les Misérables Original Network

Fraction Filter
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