DATATRANSFORMATION

DATA TRANSFORMATION

- Our data is provided in a given form
 - Tabular (vectors)
 - Network
 - Time series
 - Text
 - Images
 -
- To use the full potential of data mining, you might want to study it from multiple angles
 - How to convert from tabular to graph?
 - From Graph to Tabular?
 - From images/text to tabular (embedding)?

DIMENSIONALITY REDUCTION

Low dimensionality embedding

DIMENSIONALITY REDUCTION

- Data Mining objective: understand our data
 - We get a dataset composed of many features
 - Or worst, complex object (image, sound, graph...)
 - How to understand the organization of our data?
 - How to perform clustering?

VISUALIZATION

- Your data is perfectly fine, but you want to intuitively understand how it is organized
 - Are there groups of similar objects?
 - Are my clusters meaningful?
 - Is my classification/clustering on some types of elements and not others.

VISUALIZATION

Example: MNIST Dataset Each pixel is a variable

t-SNE embedding

CURSE OF DIMENSIONALITY

- Having hundreds/thousands of attributes is a problem for data analysis.
 - e.g.: medicine: blood analysis, genomics....
 - e.g.: cooking recipes: each column an ingredient...
- We want to reduce the number of attributes while keeping most of the information
- Also helps with scalability

CORRELATION

- Assume that you have correlated features such as age, height and weight.
 - Redundancy ! Computational Inefficiency
 - e.g., Decision tree will spend a lot of time choosing between them for no reason
 - Risk of overfitting
 - noise between correlated variables used to distinguish individuals
 - Model interpretability
 - e.g., a model will say that y depends on x or w randomly, if x and w correlated
- Dimensionality reduction can create a single variable to capture what is common
 - The rest can be lost or captured by another feature,
 - Engine horsepower, Car weight, Fuel Consumption
 - =>Performance index (horsepower and weight)
 - =>Efficiency score (weight and fuel consumption)

PCA

- PCA: Principal Component Analysis
- Defines new dimensions that are linear combinations of initial dimensions
 - Objective: concentrate the variance on some dimensions
 - So that we can keep only these ones.
 - Those we remove contain low variance, thus low information

PCA

• Algorithm:

- I)Find an "axis", a unit vector defining a line in the space
 - That minimizes the variance=>the squared distance from all points to that line

• 2)For d in [2:(initial_d)]

- Find another axis, with two constraints:
 - Orthogonal to all previous axis
 - Among those, minimizing the variance
- 3)At the end, keep the first k dimensions
 - Some information is lost

EXAMPLE PCA 2D

Explained variance(ratio)

[0.9933795, 0.0066205]

3D=>2D

CHOOSING COMPONENTS

• How to choose k?

- Elbow method... BIC/AIC...
- OR fix beforehand a min threshold of explained variance, e.g.: 80%
 - We are fine with losing 20% of information
- If there is a downstream task, cross-validation

COMPUTATION IN PRACTICE

- From standardized dataset X
- Method I:
 - I)Compute the Covariance Matrix $(X^T X)$
 - => Linear Correlation Matrix
 - 2) Find the eigenvectors of this matrix
 - $-X^T X = V \Lambda V^T$
 - V: eingenvectors = Pincipal components, Λ : Eigenvalues, = explained variance
- Method 2:
 - Apply SVD matrix decomposition
 - $X = U\Sigma V^T$
 - U: left singular vectors. Σ : diagonal matrix with the singular values, V^T :right singular vectors (the principal components)

COMPUTATION IN PRACTICE

- V are the principal components
- Computing the new positions for each observation: *XV*

PCA POPULARITY

- Why is PCA popular?
- Similar reasons than linear regression:
 - Useful
 - Eliminate correlations
 - Analytical solutions
 - Guarantee to find the global minimum of the objective
 - Could be done before modern computers
 - Interpretable solution
 - Intuitively pleasant
- No reason to consider it "better" than other methods for demensionality reduction...

NON-LINEAR SITUATIONS

Pearson correlation(d1,d2): 0

NONLINEAR DATA

MANIFOLDS

MANIFOLDS

- Manifolds are another approach to dimensionality reduction
- The general principle is to
 - I)Define a notion of distance between elements in the original space
 - 2)Define a notion of distance between elements in a reduced, target space
 - 3)Minimize the difference between distances in original and target space
- In many cases, the process is nonlinear, i.e., we choose distances such as
 - We care more about preserving the distance for items "close" in space than for those "far" from each other

MDS

- MDS: Multi-dimensional Scaling:
 - Simply minimize distance between original space and target space
 - e.g., d-dimensional forced to 2-dimensional
- How to do it?
 - I)Compute all (squared Euclidean) pairwise distances between items=>Similarity matrix
 - n x f matrix => n x n matrix
 - Apply double-centering (remove row and column means)
 - 2)Compute PCA on this similarity matrix
- Problems:
 - Very costly (nb features=nb elements), n^2
 - Try to preserve all distances, therefore extremely constrained

MDS

25

	Atl	Chi	Den	Hou	LA	Mia	NYC	SF	Sea	WDC
Atl	0	587	1212	701	1936	604	748	2139	2182	543
Chi	587	0	920	940	1745	1188	713	1858	1737	597
Den	1212	920	0	879	831	1726	1631	949	1021	1494
Hou	701	940	879	0	1374	968	1420	1645	1891	1220
LA	1936	1745	831	1374	0	2339	2451	347	959	2300
Mia	604	1188	1726	968	2339	0	1092	2594	2734	923
NYC	748	713	1631	1420	2451	1092	0	2571	2408	205
SF	2139	1858	949	1645	347	2594	2571	0	678	(
Sea	2182	1737	1021	1891	959	2734	2408	678	0	
WDC	543	597	1494	1220	2300	923	205	2442	2329	

ISOMAP

- Variation of MDS
 - I)We define a graph such as two elements are connected if they are at distance<threshold. (Alternative: fixed number of neighbors)
 - Put a weight on edges=euclidean distance
 - 2)Compute a similarity matrix, such as distance = weighted shortest path distance
 - 3)Apply MDS on it
- Non-linear distances

T-SNE

T-SNE

- t-SNE : t-distributed stochastic neighbor embedding
- Non-linear dimensionality reduction
- One of the most popular method for visualizing data in low dimensions

SNE

- General principle:
 - Define a notion of similarity $p_{j|i}$ in the high dimensional space P
 - Based on normal distribution
 - Define a notion of similarity $q_{j|i}$ in the low dimensional space Q
 - Based on student-t distribution, tends to "exaggerate" differences
 - For each point of initial coordinates x_i , find a new coordinate y_i in the lower dimensional space, such as to minimize the difference between P and Q

 $- \forall_{i,j} p_{j|i} \approx q_{j|i}$

- Distance in the original space P
 - To compute how far j is from i, consider a normal distribution centered in j with variance σ

SNE

• Mathematically: the raw distance is given as $s_{j|i}^P = e^{-\frac{||x_i - x_j||^2}{2\sigma^2}}$

 $p_{j|i} = \frac{s_{j|i}^P}{\sum_{k \neq i} s_{j|k}^P}$

- Normalizes the similarity by sum of similarity to all other points.
- With proper σ , local definition of similarity

T-SNE: PERPLEXITY

- There is a perplexity parameter σ : it controls how much each point cares more about close neighbors compared with farther neighbors
 - Low σ : Preserve mostly local distances
 - High σ : Give more importance to long-range distances
 - More expensive, more similar to MDS

INFLUENCE OF PERPLEXITY

LOW DIMENSIONAL EMBEDDINGS

EMBEDDINGS

- A recent usage of low dimensional embeddings is to encode complex objects as vectors
 - Words as Vector => Word2Vec
 - Nodes (of graph) as Vectors => Node2Vec
 - Documents as Vectors => Doc2Vec
 - • • •

WORD EMBEDDING

WORD EMBEDDING

- Words can be understood as a (very) high dimensional space
 - Using One Hot encoding: vocabulary of 1000 words=>1000 columns
- Could we assign a vector in "low dimension", encoding the "semantic" of a word?
 - Two words with similar meanings should be close

Word embedding Corpus => Word = vectors Similar embedding= similar **context**

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]

Output weights for "car"

Probability that if you randomly pick a word nearby "ants", that it is "car"

https://towardsdatascience.com/word2vec-skip-3gram-model-part-1-intuition-78614e4d6e0b

N=embedding size. **V**=vocabulary size

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]

PRE-TRAINED

- One can train word2vec on their own dataset, but it needs to be large enough (and is costly)
 - https://radimrehurek.com/gensim/models/word2vec.html
- You can use pre-trained embeddings, trained on very large corpus (Twitter, Wikipedia...)
 - e.g., Glove: <u>https://nlp.stanford.edu/projects/glove/</u>

USAGE

- Single words=> Use directly vectors
- Short texts=> Weighted average vectors (more weights to more important words, e.g., rare words: TF-IDF...)
- Long texts=> More tricky. Needs BERT/LLM

USAGE

- Parameters:
 - Embedding dimensions d
 - Context size

EXTENSIONS

- Note: LLM works in a similar way, but:
 - using a deep, transformer architecture instead of a single-layer
- LLM also provide contextual embeddings
 - The embedding of a word is different based on the sentence.

DEEP LEARNING AND EMBEDDINGS

SHALLOW TO DEEP

- Deep neural networks are also commonly used to produce complex data embedding
 - Skipgram/Word2Vec is just particular cases of a general principle
- After each layer of a DNN, items are represented as vectors
 - Usually, at some steps, those layers are low-dimensional
 - Often, the last step or the middle step
 - These can be used as embedding for other tasks

SHALLOW TO DEEP

APPLICATIONS

- Image modification: modify some values of the embedding of an object (image, music, graph...) to reconstruct a slightly different version of it
- Clustering
 - Train a DNN on image classification task, then use clustering on the embeddings to discover similar images
- Visualization
 - Using Tsne on an embedding, we can have a global view of the organization of our data
 - Music, photos, graphs, books...

GRAPH EMBEDDING

GENERIC "SKIPGRAM"

• Algorithm that takes an input:

- The element to embed
- A list of "context" elements
- Provide as output:
 - An embedding with interesting properties
 - Works well for machine learning
 - Similar elements are close in the embedding
 - Somewhat preserves the overall structure

DEEPWALK

- Skipgram for graphs:
 - I)Generate "sentences" using random walks
 - 2)Apply Skipgram
- Parameters:
 - Same as Skipgram
 - Embedding dimensions d
 - Context size
 - Parameters for "sentence" generation: length of random walks, number of walks starting from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 701-710). ACM.

NODE2VEC

- Use biased random walk to tune the context to capture *what we want*
 - "Breadth first" like RW => local neighborhood (edge probability ?)
 - "Depth-first" like RW => global structure ? (Communities ?)
 - 2 parameters to tune:
 - **p**: bias towards revisiting the previous node
 - q: bias towards exploring undiscovered parts of the network

Figure 2: Illustration of the random walk procedure in *node2vec*. The walk just transitioned from t to v and is now evaluating its next step out of node v. Edge labels indicate search biases α .

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In *Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 855-864). ACM.

EMBEDDING ROLES

STRUC2VEC/ROLE2VEC (Intuition)

- In node2vec/Deepwalk, the context collected by RW contains the labels of encountered nodes
- Instead, we could memorize the properties of the nodes: attributes if available, or computed attributes (degrees, CC, ...)
- =>Nodes with a same context will be nodes in a same "position" in the graph
- =>Capture the role of nodes instead of proximity

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mirring* (pp. 385-394). ACM.

STRUCT2VEC : DOUBLE ZKC

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (pp. 385-394). ACM.

OBJECTS/VECTORS TO GRAPHS

GRAPH<->VECTORS

- Graph Embedding: Graph->Vectors
- What about Vectors->Graphs
 - Simple approach: Correlation matrix
 - =>Represent the relations between features in a dataset
 - I)Compute the correlation between all variables(spearman/Pearson)
 - 2)Keep only correlations above a threshold (alternative: x% strongest)
 - 3)Correlation values can be represented as weights

ITEM-ITEM GRAPH

- Typical application case: Brain signal analysis
 - Distance is computed as signal correlation on fMRI, i.e., regional brain activity
 - =>Time series to graph

ITEM-ITEM GRAPH

- We can use graphs as an alternative to dimensionality reduction for visualization
 - PCA / tSNE: project items in 2D, close items are similar
 - Some impossibilities, e.g., multiple semantics for words ("palm": part of the hand, tree)
 - Networks can also be viewed in 2D and preserve the similarity information
- Approach:
 - I)Compute the distance between elements
 - Euclidean
 - Cosine
 - 2)Keep as an edge values above a threshold

ITEM-ITEM GRAPH

Comparison PCA-graph representation

FEATURE-FEATURE GRAPH

- Imagine an apartment dataset with variables surface, # rooms, etc.
 - Item-tem: apartment as nodes, links represent similar apartments
 - Feature-feature: each feature is a node, edges represent relations/correlation
- Useful in particular when many variables
 - Recommendation
 - Biological data
 - etc.

BACKBONE EXTRACTION

- In some cases, the network created might be too dense to be analyzed properly
 - Too low threshold: everything is connected
 - Too high: disconnected graph, most elements removed
- A solution is to use Backbone extraction
 - Methods that retain only the most important edges, based on different principles
 - e.g., <u>https://pypi.org/project/netbone/</u>

BACKBONE EXTRACTION

