
DATA TRANSFORMATION

 1

DATA TRANSFORMATION
• Our data is provided in a given form

‣ Tabular (vectors)
‣ Network
‣ Time series
‣ Text
‣ Images
‣ ….

• To use the full potential of data mining, you might want to
study it from multiple angles
‣ How to convert from tabular to graph?
‣ From Graph to Tabular?
‣ From images/text to tabular (embedding)?

2

DIMENSIONALITY
REDUCTION

Low dimensionality embedding

3

DIMENSIONALITY
REDUCTION

• Data Mining objective: understand our data
‣ We get a dataset composed of many features

- Or worst, complex object (image, sound, graph…)
‣ How to understand the organization of our data?
‣ How to perform clustering?

4

VISUALIZATION

• Your data is perfectly fine, but you want to intuitively
understand how it is organized
‣ Are there groups of similar objects?
‣ Are my clusters meaningful?
‣ Is my classification/clustering on some types of elements and not others.

5

VISUALIZATION

6

Example: MNIST Dataset
Each pixel is a variable

7

t-SNE embedding

CURSE OF DIMENSIONALITY

• Having hundreds/thousands of attributes is a problem for data
analysis.
‣ e.g.: medicine: blood analysis, genomics….
‣ e.g.: cooking recipes: each column an ingredient…

• We want to reduce the number of attributes while keeping
most of the information

• Also helps with scalability

8

CORRELATION
• Assume that you have correlated features such as age, height

and weight.
‣ Redundancy ! Computational Inefficiency

- e.g., Decision tree will spend a lot of time choosing between them for no reason
‣ Risk of overfitting

- noise between correlated variables used to distinguish individuals
‣ Model interpretability

- e.g., a model will say that y depends on x or w randomly, if x and w correlated

• Dimensionality reduction can create a single variable to
capture what is common
‣ The rest can be lost or captured by another feature,

- Engine horsepower, Car weight, Fuel Consumption
- =>Performance index (horsepower and weight)
- =>Efficiency score (weight and fuel consumption)

9

PCA

10

PCA

• PCA: Principal Component Analysis

• Defines new dimensions that are linear
combinations of initial dimensions
‣ Objective: concentrate the variance on some

dimensions
- So that we can keep only these ones.
- Those we remove contain low variance, thus low information

11

PCA
• Algorithm:

‣ 1)Find an “axis”, a unit vector defining a line
in the space
- That minimizes the variance=>the squared

distance from all points to that line

• 2)For d in [2:(initial_d)]
‣ Find another axis, with two constraints:

- Orthogonal to all previous axis
- Among those, minimizing the variance

• 3)At the end, keep the first k
dimensions
‣ Some information is lost

?
?

?

12

EXAMPLE PCA 2D

Covariance matrix (original) Covariance matrix (pca)
[1.98675899e+00, 0],
[0, 1.32410092e-02]

1 1 1.98675899 0.01324101

Variance by dimension Variance by dimension

[1. , 0.98675899],
 [0.98675899, 1.]

Sum of variance Sum of variance
2 2

[0.9933795, 0.0066205]Explained variance(ratio)
13

3D=>2D

14

CHOOSING COMPONENTS

Explained
variance

• How to choose k?
‣ Elbow method… BIC/AIC…
‣ OR fix beforehand a min threshold of explained variance, e.g.: 80%

- We are fine with losing 20% of information
‣ If there is a downstream task, cross-validation

15

COMPUTATION IN PRACTICE
• From standardized dataset

• Method 1:
‣ 1)Compute the Covariance Matrix ()

- => Linear Correlation Matrix
‣ 2) Find the eigenvectors of this matrix

-

- : eingenvectors = Pincipal components, : Eigenvalues, = explained variance

• Method 2:
‣ Apply SVD matrix decomposition
‣

- : left singular vectors. : diagonal matrix with the singular values, :right singular vectors
(the principal components)

X

XT X

XT X = VΛVT

V Λ

X = UΣVT

U Σ VT

16

COMPUTATION IN PRACTICE

• are the principal components

• Computing the new positions for each observation:
‣

V

XV

17

PCA POPULARITY
• Why is PCA popular?

• Similar reasons than linear regression:
‣ Useful

- Eliminate correlations
‣ Analytical solutions

- Guarantee to find the global minimum of the objective
- Could be done before modern computers

‣ Interpretable solution
‣ Intuitively pleasant

• No reason to consider it “better” than other methods for
demensionality reduction…

18

NON-LINEAR SITUATIONS

Pearson correlation(d1,d2): 0

19

NONLINEAR DATA

20

MANIFOLDS

21

MANIFOLDS

• Manifolds are another approach to dimensionality reduction

• The general principle is to
‣ 1)Define a notion of distance between elements in the original space
‣ 2)Define a notion of distance between elements in a reduced, target space
‣ 3)Minimize the difference between distances in original and target space

• In many cases, the process is nonlinear, i.e., we choose
distances such as
‣ We care more about preserving the distance for items “close” in space than for

those “far” from each other

22

23

MDS
• MDS: Multi-dimensional Scaling:

‣ Simply minimize distance between original space and target space
- e.g., d-dimensional forced to 2-dimensional

• How to do it?
‣ 1)Compute all (squared Euclidean) pairwise distances between

items=>Similarity matrix
- n x f matrix => n x n matrix
- Apply double-centering (remove row and column means)

‣ 2)Compute PCA on this similarity matrix

• Problems:
- Very costly (nb features=nb elements),
- Try to preserve all distances, therefore extremely constrained

n2

24

MDS

25

ISOMAP
• Variation of MDS

‣ 1)We define a graph such as two elements are connected if they are at
distance<threshold. (Alternative: fixed number of neighbors)
- Put a weight on edges=euclidean distance

‣ 2)Compute a similarity matrix, such as distance = weighted shortest path
distance

‣ 3)Apply MDS on it

• Non-linear distances

26

T-SNE

27

T-SNE

• t-SNE : t-distributed stochastic neighbor embedding

• Non-linear dimensionality reduction

• One of the most popular method for visualizing data in low
dimensions

28

SNE

• General principle:
‣ Define a notion of similarity in the high dimensional space

- Based on normal distribution
‣ Define a notion of similarity in the low dimensional space

- Based on student-t distribution, tends to “exaggerate” differences
‣ For each point of initial coordinates , find a new coordinate in the lower

dimensional space, such as to minimize the difference between and
-

pj|i P

qj|i Q

xi yi
P Q

∀i, j pj|i ≈ qj|i

29

SNE

• Distance in the original space
‣ To compute how far is from , consider a normal distribution centered in

with variance

‣ Mathematically: the raw distance is given as

‣

- Normalizes the similarity by sum of similarity to all other points.
- With proper , local definition of similarity

P
j i j

σ

sP
j|i = e−

∥xi − xj∥
2

2σ2

pj|i =
sP
j|i

∑k≠i sP
j|k

σ

i

i

Euclidean

Normal

30

T-SNE: PERPLEXITY

• There is a perplexity parameter : it controls how much each
point cares more about close neighbors compared with
farther neighbors
‣ Low : Preserve mostly local distances
‣ High : Give more importance to long-range distances

- More expensive, more similar to MDS

σ

σ
σ

31

INFLUENCE OF PERPLEXITY

32

33

LOW DIMENSIONAL
EMBEDDINGS

34

EMBEDDINGS

• A recent usage of low dimensional embeddings is to encode
complex objects as vectors
‣ Words as Vector => Word2Vec
‣ Nodes (of graph) as Vectors => Node2Vec
‣ Documents as Vectors => Doc2Vec
‣ ….

35

WORD EMBEDDING

36

WORD EMBEDDING

• Words can be understood as a (very) high dimensional space
‣ Using One Hot encoding: vocabulary of 1000 words=>1000 columns

• Could we assign a vector in “low dimension”, encoding the
“semantic” of a word?
‣ Two words with similar meanings should be close

37

SKIPGRAM
Word embedding

Corpus => Word = vectors
Similar embedding= similar context

[http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/]
38

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b39

SKIPGRAM

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b40

N=embedding size. V=vocabulary size

SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
41

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

SKIPGRAM

[https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/]
42

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

PRE-TRAINED

• One can train word2vec on their own dataset, but it needs to
be large enough (and is costly)
‣ https://radimrehurek.com/gensim/models/word2vec.html

• You can use pre-trained embeddings, trained on very large
corpus (Twitter, Wikipedia…)
‣ e.g., Glove: https://nlp.stanford.edu/projects/glove/

43

https://nlp.stanford.edu/projects/glove/

USAGE

• Single words=> Use directly vectors

• Short texts=> Weighted average vectors (more weights to
more important words, e.g., rare words: TF-IDF…)

• Long texts=> More tricky. Needs BERT/LLM

44

USAGE

• Parameters:
‣ Embedding dimensions d
‣ Context size

45

EXTENSIONS

• Note: LLM works in a similar way, but:
‣ using a deep, transformer architecture instead of a single-layer

• LLM also provide contextual embeddings
‣ The embedding of a word is different based on the sentence.

46

DEEP LEARNING
AND

EMBEDDINGS

47

SHALLOW TO DEEP

• Deep neural networks are also commonly used to produce
complex data embedding
‣ Skipgram/Word2Vec is just particular cases of a general principle

• After each layer of a DNN, items are represented as vectors
‣ Usually, at some steps, those layers are low-dimensional
‣ Often, the last step or the middle step
‣ These can be used as embedding for other tasks

48

SHALLOW TO DEEP

49

APPLICATIONS
• Image modification: modify some values of the embedding of

an object (image, music, graph…) to reconstruct a slightly
different version of it

• Clustering
‣ Train a DNN on image classification task, then use clustering on the

embeddings to discover similar images

• Visualization
‣ Using Tsne on an embedding, we can have a global view of the organization of

our data
- Music, photos, graphs, books…

50

GRAPH EMBEDDING

51

GENERIC “SKIPGRAM”

• Algorithm that takes an input:
‣ The element to embed
‣ A list of “context” elements

• Provide as output:
‣ An embedding with interesting properties

- Works well for machine learning
- Similar elements are close in the embedding
- Somewhat preserves the overall structure

52

DEEPWALK

• Skipgram for graphs:
‣ 1)Generate “sentences” using random walks
‣ 2)Apply Skipgram

• Parameters:
‣ Same as Skipgram

- Embedding dimensions d
- Context size

‣ Parameters for “sentence” generation: length of random walks, number of walks
starting from each node, etc.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 701-710). ACM.

53

NODE2VEC
• Use biased random walk to tune the context to capture

what we want
‣ “Breadth first” like RW => local neighborhood (edge probability ?)
‣ “Depth-first” like RW => global structure ? (Communities ?)
‣ 2 parameters to tune:

- p: bias towards revisiting the previous node
- q: bias towards exploring undiscovered parts of the network

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 855-864). ACM. 54

EMBEDDING ROLES

55

STRUC2VEC/ROLE2VEC

• In node2vec/Deepwalk, the context collected by RW contains
the labels of encountered nodes

• Instead, we could memorize the properties of the nodes:
attributes if available, or computed attributes (degrees, CC, …)

• =>Nodes with a same context will be nodes in a same
“position” in the graph

• =>Capture the role of nodes instead of proximity
Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.56

(Intuition)

Ribeiro, L. F., Saverese, P. H., & Figueiredo, D. R. (2017, August). struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 385-394). ACM.

STRUCT2VEC : DOUBLE ZKC

57

OBJECTS/VECTORS
TO

GRAPHS

58

GRAPH<->VECTORS

• Graph Embedding: Graph->Vectors

• What about Vectors->Graphs
‣ Simple approach: Correlation matrix
‣ =>Represent the relations between features in a dataset

- 1)Compute the correlation between all variables(spearman/Pearson)
- 2)Keep only correlations above a threshold (alternative: x% strongest)
- 3)Correlation values can be represented as weights

59

ITEM-ITEM GRAPH
• Typical application case: Brain signal analysis

‣ Distance is computed as signal correlation on fMRI, i.e., regional brain activity
‣ => Time series to graph

60

ITEM-ITEM GRAPH

• We can use graphs as an alternative to dimensionality
reduction for visualization
‣ PCA / tSNE: project items in 2D, close items are similar

- Some impossibilities, e.g., multiple semantics for words (“palm”: part of the hand, tree)
‣ Networks can also be viewed in 2D and preserve the similarity information

• Approach:
‣ 1)Compute the distance between elements

- Euclidean
- Cosine

‣ 2)Keep as an edge values above a threshold

61

ITEM-ITEM GRAPH

62

Comparison PCA-graph representation

FEATURE-FEATURE GRAPH

• Imagine an apartment dataset with variables surface, # rooms,
etc.
‣ Item-tem: apartment as nodes, links represent similar apartments
‣ Feature-feature: each feature is a node, edges represent relations/correlation

• Useful in particular when many variables
‣ Recommendation
‣ Biological data
‣ etc.

BACKBONE EXTRACTION

• In some cases, the network created might be too dense to be
analyzed properly
‣ Too low threshold: everything is connected
‣ Too high: disconnected graph, most elements removed

• A solution is to use Backbone extraction
‣ Methods that retain only the most important edges, based on different

principles
‣ e.g., https://pypi.org/project/netbone/

64

https://gitlab.liris.cnrs.fr/coregraphie/netbone

BACKBONE EXTRACTION

65

