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Abstract

The analysis of many complex systems leverages recent developments in network science.
Static networks are already well characterized, at least from a theoretical point of view,
while networks evolving in time — temporal networks — still lack a widely-accepted for-
malization. With our investigation we contribute to bridge this gap, by working on the
time-window — or “snapshot” — representation of temporal networks. Our contribution is
twofold. Firstly, we define two scores, named stability and fidelity, that can be measured
to evaluate quantitatively a given time-window aggregated network and compare different
aggregation techniques between them. Secondly, we develop methods to do a preliminary
filtering of temporal networks, with the idea to prepare further analysis and visualization.
We thus provide a general framework to both simplify large temporal networks, and eval-
uate the resulting object. Finally, we perform experiments on representative datasets in
the literature and then discuss the potential and limits of our framework.
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Chapter 1

Introduction

From the beginning of this century, advancements in information technology and computational
engines made it possible to increase exponentially the amount of collected data. Data gathering and the
analysis of the resulting datasets are crucial for the decision-making, strategy development and activity
planning of today innovative companies as well as public institutions. The possibility to efficiently
exploit the information that comes from collected datasets is driven by and also drives in turn, new
developments in fundamental and applied research. Depending on the objective and background of the
researcher, the focus can change from systems modeling (mathematics, physics, complex systems) to
the development and optimization of data mining algorithms (computer science, data science, software
engineering).

The number and size of existing datasets is growing so fast that the development of computational
tools to analyze them can hardly follow. With the limitation imposed by the computational power,
time and costs available, it is necessary to have models to simplify the datasets in order to analyze
them. Sometimes, known characteristics of the underlying system can be exploited to do so, but it is
often more interesting — or even necessary — to model and analyze a dataset without any a priori
knowledge.

One way to efficiently model and analyze most of nowadays datasets is with the network formalism.
It comes from graph theory, a branch of mathematics that has been adapted to the new needs of data
analysis, during the last two decades. The key idea is to introduce a topological structure by connecting
the basic units of the system with links, if and only if they are related according to a certain definition
of mutual interaction. As a result, we go from a data table to a web of mutual interactions, where much
of the detail about each single link and unit is often neglected. This aspect is extremely important
from a system modeling point of view: the essence of the system lays on the structure of its relations
itself, not much on the specific properties of every single actor.

The next key question from a complex systems science viewpoint is whether the network structure
is constant in time, so that systems dynamics occurs on it, or whether its web of relations have a
temporal evolution. In this second case, it is necessary to add a time component to the network
representation. Otherwise, a single static network will only capture interactions at a given instant. On
the contrary, temporal networks integrate the time component in a non-trivial manner and are thus
more suitable for systems whose structure of interactions changes consistently in time.

There exist many possible ways to represent and handle temporal networks, depending on the
specific dataset, needs and even personal taste. The more intuitive way to picture a temporal network
is perhaps as a sequence of static networks obtained by grouping close interactions in time under time
windows. This representation is usually referred in literature as a “snapshot graph”. In this way,
temporal networks are seen as motion pictures, where each single frame is made by a static network.
The process to obtain a snapshot graph from the original dataset is non-unique: time windows size has
to be chosen and adjacent windows can either be disjoint or partially superpose, for instance. The goal
of our investigation is to develop a framework to evaluate and quantify the effect of this type of choices,
with the ultimate purpose of improving the representation and analysis of temporal networks.
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Chapter 2

Preliminaries

2.1 Background

2.1.1 Static networks

Many complex systems and datasets can be represented as networks. The basic components — that
we call nodes (or vertices) — are connected pairwise according to a certain property of the system —
through the so-called links (or edges). The introduction of this formalism into the analysis of complex
systems has led to the development of the entire new field of network science, at the beginning of
this century |1, 2, 3|]. The term complex networks is often used to refer to complex systems that are
efficiently studied with the network formalism.

Today, typical approaches, measures — called centralities — and methodologies conceived for the
network formalism are successfully employed for systems modeling in applied research fields, e.g.,
human communication, brain science, ecology and transportation. Pioneering papers were [4], where
the small-world property was first formalized; [5], introducing the Barabasi-Albert generative model
for scale-free networks; [6], starting the characterization of community structure in real networks.

One of the biggest strengths of modeling datsets as static networks is in their intuitive and powerful
visualization (Figure 2.1). A simple look at a static network is often self-explanatory and quite easily
readable even for non-experts, because key aspects of the structure of the underlying dataset can be
directly appreciated by eye. And in fact, properties as the node degree — the number of links including
that node — and the community structure come mainly from the study of social networks, which means
that they are based on dynamics that we know from our every-day life.

Figure 2.1: Community structure of political blogs in the U.S.A. before 2004 Presidential Election. Nodes
are blogs with a political orientation (red for conservatives, blue for liberals), connected on the basis of mutual
citations. Adapted from Adamic and Glance, 2005 [7].
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2.1.2 Temporal networks

In this report, we are interested in networks that change their structure over time, that is, networks
with a time component. In this case, links between nodes also have a time label, that we call a
timestamp. From now on, we will refer to single links with a timestamp as contacts 8] and we will
reserve the term links itself for node pairs having at least one contact; we will use the term intervals
to refer to contacts with duration, i.e., lasting for a longer time interval than a single time step dt. We
can consider temporal networks to be made up of contacts or of intervals. Temporal networks based on
the second approach are usually labeled as “interval graphs” (Figure 2.2). It is still an open question
to determine which type of representation is more suitable for a given dataset. The answer could still
have to be found or the question above could even be ill-posed, so that choosing the representation
should be simply a matter of computational ease or personal taste.

More generally, temporal networks are far from being a simple generalization of static networks;
instead, they make an entire line of research on their own. A widely-accepted comprehensive view
is still missing [9], starting from the name of the field: temporal networks, dynamic networks, time-
varying networks, temporal graphs, evolving graphs etc. Not only the direct transposition of tools that
are used for the data mining of static networks often turns out to be ineffective, but even the data
representation and visualization itself of temporal networks is non-trivial.

0 2 4 6 8 time

Figure 2.2: Toy example of an interval graph. It is displayed as a link stream, one of the most popular ways
to visualize temporal networks made by intervals. Picture adapted from Latapy et al., 2018 [10].

2.1.3 Representation of static and temporal networks

We use the term ‘“representation” as in the reviews of Holme and Saramiki [8, 9]: it has the
general meaning of one possible way to look at the network. Usually, a given representation directly
is, or matches with, a data structure. Sometimes it also corresponds to a graphical depiction, so
that representation and visualization coincide. But this is not the general case, so that network
representations and network visualization are two distinct tasks.

For static networks three possibilities are usually considered and they directly correspond to data
structures: the edge list — a list of all the edges in the network in the form (i,j) where ¢ and j are
nodes; the adjacency list — for each node, a list is stored of the other nodes that are connected to it
through links; the adjacency matrix — a binary square matrix with ones at the entries corresponding
to links: nodes ¢ and j are connected if and only if the entry #j equals 1 (they are not connected if the
entry is 0).

On the contrary, the representation of time-varying networks is more tricky, as many choices are
possible to account for the time dependence, including the contact sequence — a list of triads on the
form (node 1, node 2, timestamp) — the link stream (Figure 2.2) and the snapshot graph — a temporal
sequence of static networks. The latter is the type of representation that is obtained by performing
time-window aggregation, as we detail in Section 2.2. It is the most human-friendly way to picture the
evolution in time of a complex network, since the handiness of static networks is recovered snapshot
by snapshot. With respect to more “conservative” representations as the contact sequence and the link
stream, which are closer to the original dataset structure, snapshot graphs have the drawback that the
exact time ordering of any two links inside of the same snapshot is lost, as well as the number of times
that a given link occurred (this type of information is partially conserved through link weights).

In our investigation we focused on the representation of temporal networks, not on their visual-
ization. Nevertheless, the representation via time-window aggregation can be easily translated to a
graphical visualization, as a time sequence of static networks. Visualization algorithms and software
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products born for static networks (as ForceAtlas2 [11] and Gephi [12], respectively) can be exploited
snapshot-by-snapshot to get a picture of the temporal networks’ evolution. More generally, the wide
choice of representations brings to many possibilities for visualization: the time coordinate can be
included as a spatial axis (as in link streams, Figure 2.2) or by making a movie.

2.2 Definition of the time-window aggregation

An alternative to time-window aggregation of temporal networks is given by many existing methods
of network “summarization” — a general term used in data mining to refer to the simplification and
compression of various data structures. A review of the existing methods for the summarization of
temporal networks, up to 2018, is given in the 4th chapter of [13]. The goal of those summarization
methods is to facilitate the analysis of temporal networks; in this view, it is the same goal of time-
window aggregation. But we have to keep in mind the following important difference: in the first case,
the output is given by a time series of the most important patterns, actors or processes |14, 15, 16, 17,
18, 19], but a global view of the underlying network is lost. On the opposite, the output of a time-
window aggregation is given by a sequence of snapshots. Hence, despite being further from an explicit
analysis of the dynamic processes going on, time-window aggregation usually allows to keep a richer
representation of the system, without breaking the network representation to pieces. It should thus
be clear that summarization methods are not the right path to take if the goal is to find a “networky”
representation of the evolution of complex systems.

The general idea of time-window aggregation is to convert a contact sequence into a sequence of
static networks: the snapshots. First, the whole time period has to be segmented into a certain number
of time intervals — that we call windows; adjacent windows can also partially overlap. We refer to
this segmentation process as the windowing. For each window, all the links with at least one contact
included in the corresponding time interval are “projected” onto a single snapshot. For each link, we
store its label (the two nodes involved) and a link weight (Section 3.2.1) and we consider as if the
link was an interval covering the entire time window. That is why we call it an “aggregation” method,
because links that are close in time end up belonging to a same static network and the exact time
ordering is left out.

The first problem that aggregation is expected to solve concerns degenerate networks, i.e., temporal
networks that are ill-defined at the time resolution of the time step. A classic example is given by
email datasets [20], where emails define links between sender and receiver(s): the recording time step
is smaller than the average waiting time between consecutive events (the sending of an email), so that
most of the timestamps will correspond to very few or even no events at all. Therefore, a time-window
aggregation with window sizes close to the finest granularity would be meaningless, resulting in empty
snapshots or with very few and usually disconnected links. Aggregating with a window size larger
than the measurement resolution, we can go from degenerate networks to aggregated networks that
are meaningful from a network science viewpoint, snapshot by snapshot.

In the face-to-face datasets that we considered, from SocioPatterns project, the original time step
already comes from the aggregation of measurements taken with a finer granularity (more details are
in Section 6.1.1 of the Annex). But even if a time-window aggregation is already performed by the
authors to avoid degeneracy, snapshots with a small window size still have very few nodes and are
much disconnected. That is why it can be useful to perform a second windowing prior to the analysis
of the datasets.

Usually, three types of windowing are found in the literature (Figure 2.3): (i) non-overlapping
windows, where the whole period is subdivided into side-by-side windows that do not superpose; (ii)
overlapping — or sliding — windows, whose time intervals are partially superposed; (iii) growing
windows, where the starting timestamp is in common among all windows and the size is progressively
increased, so that each snapshot incorporates all the previous ones. An application of all the three
possibilities to the analysis of community evolution can be found in [21]. In our investigation, we only
considered windows with fixed size w, either non-overlapping or sliding by one time step at a time.

Known methodologies for the analysis of static networks can be applied to the single snapshots
that result from the time-window aggregation. Hence, each snapshot should be “good” from a network
science point of view. That is, they should lay between the two following limit cases: i) a too sparse
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Figure 2.3: Schema of the three main types of windowing. Time is on the horizontal axis; vertical lines
mark the beginning (in green) and the end (in red) of the windows. The corresponding time interval for every
window is indicated by the arrows below each picture. a) Non-overlapping with window size w, fixed or varying
snapshot by snapshot. b) Overlapping with fixed window size w and fixed shift s between two consecutive
windows. When not specified, s is taken equal to the measurement resolution, i.e., the smallest possible time
step dt. Note that non-overlapping windowing can be considered as the limit case where s = w. ¢) Growing
windows with fixed starting time and increasing window size wy, ws, w3, . . .

graph, with too many isolated nodes, ii) a too dense graph, close to a clique, where almost any node
is connected to any other. As a consequence, the window size should not be too short, nor too large,
respectively (Figure 2.4).

Some articles published in the early '10s addressed the problem of formalizing the aggregation
process, to assess the reliability of a subsequent data analysis. In particular, |23, 24| investigated and
quantified the influence of the choice of the window size, in the case of non-overlapping windows. For
networks with periodic activity, a natural choice is to perform a non-overlapping windowing with fixed
window size corresponding to the intrinsic time scale of the dynamics. For instance, communication
networks usually follow a circadian cycle, so that aggregation by windows of 24 hours is often an
appropriate choice. But in other cases, the characteristic time scale is unknown, or it doesn’t even
exist [8]. In all these cases, the choice of the window size necessarily biases the analysis. That is why
researchers began to propose methods to discover automatically the best parameters for time-window
aggregation, focusing mainly on reducing biases and limiting the number of free parameters of their
algorithms.

'- .:. ..)l . % r: l:::" t %
-.. .:. %ee . PR T /e o’
S ¥ 1 s . ¢ o
e . o ) ® X e o
P LN o ot
P .s. ® L) o2 20 e 2000
B . . ¢ o=t t00-00 'y
* N LY @ 2 e o ..-‘ ..'.
. ~s “E am—rt A T
. @ P Y e .
2eep et® ' os. © .
L1, i “:. ie *-% ..‘ o3 :-.'
5 minutes 1 hour 24 hours

Figure 2.4: Snapshots with different increasing window sizes, obtained by non-overlapping windowing of a
Bluetooth proximity network. As we can easily appreciate, at 5 minutes we get a too disconnected network,
with many small connected components, while at 24 hours the network has a very high density, close to a full
clique. In both cases, the visualization is rather useless. Picture from Sapiezynski et al., 2019 [22].
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2.3 Overview of windowing methods

A common goal of windowing methods available in the literature is to automatically find a charac-
teristic time scale of the system, that is, of the evolution of the underlying temporal network structure.
But as many analysis suggest, the proper window size depends on the property that we wish to analyze
[23, 25, 26, 27, 28|. Hence, it is often inappropriate to look for the characteristic time scale, but any
possible choice to optimize the aggregation can bring to a characteristic time scale of the network.
We agree with this view and it was not our main purpose to find a scale with a new method from us.
Nevertheless, we are able to suggest for which values of the window size the derived representation is
unstable or too distant with respect to the original temporal network. Given a time-window aggregated
network, our framework allows to determine how much it is stable and faithful to the original data set.

Windowing algorithms in the literature usually consider non-overlapping windows and they can be
split into 2 main groups. In the first one, all the windows have the same size w [25, 27, 28, 29|. So, many
values of w are tested and the best one is selected according to a certain criterion. We refer to this group
as the “fixed” windowing approach. In the second one, the “dynamic” windowing approach, windows
have time-varying sizes |26, 30, 31, 32]. Potentially, a varying w is a valuable generalization, allowing
to sample each period with the most appropriate frequency (higher frequency when the network evolves
more rapidly). Dynamic windowing becomes particularly interesting for networks with non-periodic
evolution, where any characteristic time scale cannot be valid for the whole time period. On the
contrary, for temporal networks with an intrinsic periodicity, a fixed windowing is expected to be the
more suitable approach. The optimized window size would indeed reflect a characteristic time scale of
network’s evolution.

In this report, we focus on the fixed windowing approach. We take [25] as the representative of
this class: it is one of the oldest and it is much cited by successive studies. In this article, to choose
the best value w the authors balance noisiness (too small windows), with the loss of information that
comes from aggregating data (too large windows). We appreciate this idea of having a balance between
two extremes, but we disagree on some aspects of the implementation. First of all, we have to choose
a certain network measure F' a priori and then track its evolution snapshot-by-snapshot. This passage
is quite common across the different methods: since we are often interested in applying ready-made
tools for the analysis and visualization of static networks to the single snapshots, many address the
issue by directly using static network measures to guide the aggregation [23, 26, 27].

But with this approach, in different ways, available windowing methods go beyond our goal of
a general preliminary treatment (the filtering, Section 3.2): they end up already starting or directly
performing a data analysis, skipping the more fundamental question of quantifying the stability of the
aggregated network that is returned. As a result, the objectiveness and generality that we wish to
maintain are compromised by the introduction of biases. In our view, network measures should be
considered only after the aggregation process. Indeed, different network measures bring to different
window sizes and there is no choice that ensures to always obtain a representation that is stable in
itself, i.e. with smooth transitions from snapshot to snapshot.

To quantify the information loss, authors of [25] compute a compression ratio: they take the
time series {F(G1), F(G2),...,F(GN)}, where G1,Ga,...,Gx are the snapshots, and they apply a
compression algorithm on it; then, they return the ratio between the bit length of the uncompressed
series and the bit length of the compressed version of it. We believe that, as other methods based on
compression algorithms [31, 32|, it as the disadvantage of being a sort of black box, lacking intuitiveness
and interpretability. We believe that this same downside is shared by ML-driven approaches, as [28].

To conclude this section, we briefly comment [30], a representative of the class of dynamic win-
dowing methods. There, windowing aggregation is driven by a maximization in similarity (Equation
3.1) between every two subsequent snapshots. The algorithm works in an online fashion: at a given
time during the execution there is a growing window with the beginning anchored to the end of the
previous window: at each step the end of the growing window is moved forward and similarity of the
corresponding snapshot to the immediately previous one is computed. The growing window is cut, to
begin with the next one, at the size for which similarity with the previous window is maximum.

In the paper, authors present their algorithm and code as almost automatic and parameter-free.
We carried out some experiments by running their code on “our” datasets (details on the datasets are
in Section 6.1.1) and we discovered that there are actually many parameters left to the user, who can
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tune and greatly modify the resulting aggregation.

We bring this example here to point out that most methods that are presented as objective and
fully automatic, actually require customization from the final user. This is not necessarily a downside,
since in this way methods can adapt to different needs, but it means that: (i) a perfect and autonomous
method doesn’t exist and (ii) evaluation frameworks as the one we propose are extremely useful to
examine time-window aggregated networks produced through different algorithms or sets of parameters.
Finally, we remark that often the codes are not directly available to the reader and reproducing exactly
authors results by coding from scratch can be very difficult.

2.4 Evaluation of time-window aggregated networks

Every paper presenting aggregation methods includes a certain self-evaluation. Often, network
datasets with well-known documented dynamics are considered, as the Enron emails corpus [20]. In
this way, authors can test whether the snapshot graphs produced through their method are able to
replicate or even outperforms previous ones. On the contrary, very few studies define general evalu-
ation frameworks to compare different windowing methods between them. Moreover, we think that
the more fundamental questions about which properties characterize a proper time-window network
representation are never directly and comprehensively addressed.

We now review some papers that developed general evaluation frameworks for aggregated temporal
networks and that we find worth mentioning. We begin with the supervised approach by Fish and
Caceres, 2017 [28]. They start with a segmentation of the original network into large non-overlapping
windows (on the order of 5 for a whole dataset). Then, they train a certain prediction task — link
prediction, attribute prediction or change-point detection — considering the large segments by couples,
with the older segment as the training set and the newer segment as the test set. In this way, they
make a quantitative comparison between different windowing methods.

The point of this interesting approach that we find unsatisfactory is that they do not directly
compare the aggregated network with the original network. This is precisely what we do through our
fidelity score, defined in Section 3.1.2. Also, the rating of different methods depends on the choice of
the prediction task. Despite this being an advantage if we are interested from the start on a specific
type of analysis — let’s say change-point detection — this task-dependence does not allow to establish
whether the snapshot series is stable and reliable in general, i.e., also for other types of analysis and
for visualization.

Mining temporal networks evolution, snapshots should respect the original time ordering of the con-
tacts as much as possible. That is, their fidelity to the original contact structure should be maximized.
If we are interested in diffusion processes, one of the most important topics of temporal networks,
then it is crucial to directly control the causality of temporal chains of contacts, or cascades. As an
example from epidemiology, let’s consider the following case: a contact between A and B occurs at the
timestamp ¢1; then, a contact between A and C occurs at the timestamp to > t1. Now, if C is infected
and the two contacts are projected onto the same snapshot, either we let the infection to spread across
a same snapshot — so that B gets mistakenly infected — or we avoid spreading across a same snapshot
— so that A remains mistakenly not infected. In general, the aggregation process modifies causal prop-
agation between the nodes, with the risk of introducing artifacts onto the spreading cascades. Hence,
a good windowing method should, at the same time, aggregate enough to have meaningful snapshots
and control the loss of causal information.

The effect of time-window aggregation on diffusion processes has been quantified in [24]| through
the occupation probability of simple random walks. Another interesting paper is [29], where authors
define and compute the occupancy of time-preserving paths between any two nodes; this quantity is
used to find a threshold size for the window size beyond which it becomes risky to trust results coming
from the analysis of the aggregated network. Both studies consider non-overlapping windows and warn
against too large window sizes.

Our purpose is slightly different: taking causality into account requires a consistent computational
effort, which can be imitating in the case of large and /or dense networks. Therefore, defining our prop-
erty of fidelity to the original graph (Section 3.1.2), we did not directly relate to diffusion properties.
Clearly, this also limits the potential of our score, as discussed in Sections 4.1.3 and 5.1.
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Chapter 3

Proposed framework

3.1 Evaluation scores

3.1.1 Stability

In this section, we formally define the first of the two properties that we considered for the evalu-
ation of snapshot graphs. Behind this property there is the idea to have smooth transitions between
subsequent snapshots. Hence, we want a time-window aggregated network to be labeled as unstable if
snapshots that are close in time differ too much from one another.

To define stability, we first have to choose a measure of how much a given snapshot is akin to
another one, that we call similarity score. The one we mostly worked with is Jaccard coefficient.
Given the two static networks G1 = (V1, E1) and Go = (Va, E2) (we use the standard graph theory
formalism where G is the graph, V' the set of vertices — nodes — and E the set of edges — links) the
Jaccard similarity between the two is:

’El N EQ‘

J(G1,Ga) = By U By (3.1)

where |E| is the cardinality of the set E, i.e., the number of elements in F. We easily observe that
J is normalized: it equals 1 if the two sets of links are identical; 0 if none of the links is in common
between the two. During our experiments, we also considered a weighted Jaccard coefficient. In this
case, graphs are in the form G = (V, E, W) (a real number w,, the weight, is assigned to every edge e
in F and stored in the set W) and the weighted Jaccard coefficient .J,, becomes:

ZeeEl UE> min(wlae’ U)de)

Y eeBuE, MaAX(W e, w2 )

Juw(G1,Ge) = (3.2)

where w; . is the weight of edge e with respect to graph G if e € Ey; we fix wi . = 0 if e ¢ Ey, that
is, if e € Fa. The same holds for ws ., mutatis mutandis.

Other choices are possible for the similarity score, but the Jaccard coefficient is among the most
diffused and we believe that it intuitively represents the idea of a smooth transition between adjacent
snapshots. A recent review of network similarity scores can be found in [33], including more sophis-
ticated and thus less intuitive alternatives to the Jaccard score (based on entropy measures or graph
Laplacian matrices, for instance).

Then, stability S(A) of the aggregated network A is defined as a weighted average of snapshot-to-

snapshot similarity:
_ ZGLGQ J(Gl’ G2) - mln(’Ella ’E2’)

where the summations are over all the consecutive snapshots G; and Go in A. We weight similarities
via the smallest cardinality of the smallest snapshot between the two. This allows to normalize with
respect to the size and also to cut out degenerate situations where one of the two snapshots has very
few links, like at the beginning or at the end of a school day in the datasets that we analyzed.

S(A) (3.3)
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3.1.2 Fidelity

For this second property we did not find comparable definitions in the literature. As we reported
in Section 2.4, very few articles proposed general frameworks to compare aggregation methods and we
did not find any that matches well with our objectives. The idea behind this second score is that a
time-window aggregated network has a low fidelity if it differs much from the original contact structure.

First of all, we chose to quantify the distance between a time-window aggregated temporal network
and the original dataset with a generalized graph edit distance. Namely, we count how many contacts
differ between the two networks. In terms of generalized adjacency matrices (tensors with time as the
third component), we compute the distance D(A) between the time-window aggregated network A and
the original network O through an entry-wise L; norm:

D(A) = [[A= Oy = lai i — 0ijl (3.4)
ijst

where entry a; ;; equals 1 if at least one contact from node 7 to node j exist within the time window
that contains timestamp ¢; while o; j; equals 1 if a contact was detected at the timestamp ¢. We recall
that for each time window [t1, t3] we replace each link (7, j) by an interval (i, j, [t1,t2]), if and only if
there exist a contact (i, j,t),t € [t1,t2]. D(A) counts the number of “artificial” contacts introduced in
this way: for each interval (i, j, [t1,?2]) we introduce as many false positives (FPs) as the number of
times that there wasn’t a contact (7, j,t) at the timestamp t € [t1, t2].

As we discuss in the next Section, we considered different ways to filter the data, in order to neglect
those contacts that are not crucial for the structure of the temporal network, and that we can consider
as noise. Filtering data in this way, we can reduce the number of FPs. As an example, let’s consider
the extreme case where a single contact occurs in a certain snapshot of a temporal network aggregated
trough non-overlapping windows. Removing that contact we reduce D(A) by the number of timesteps
dt that fit in a time window of size w: w/dt (minus 1, for the only contact that was actually there). In
other words, we get rid of all the FPs that the contact caused, at the cost of introducing a single false
negative (FN) for the contact itself which is filtered out. In general, increasing the number of filtered
contacts we have that FPs decrease and FNs increase, their sum being D(A).

Distance is inversely correlated to what we want to call fidelity. The limit cases are D(A) =0 —
if A and O are equal, so that D(A) = size(A) = size(O) (where the function “size” counts the total
number of entries) — and D(A) = 1 — if all the entries are different. To have a fidelity score of 1 in
the first case and 0 in the second case, we define F'(A) as:

D(A)

FlA)=1- size(A)

(3.5)

3.2 Filtering

To explain the principle of our filtering procedure, we make an analogy with astrophotography:
while taking a long-exposure picture, we could want to capture a planet or a galaxy; but during
the exposure, closer objects as a shooting star could rapidly pass throw the field of view, and a
background noise (from the atmosphere and electronics) causes pixel to stochastically blink. Processing
the photograph, we could remove the faster objects and smooth out the noise, to only keep the actual
subject. Links lasting for only a small interval or blinking in the form of isolated contacts are considered
respectively as fast shooting stars and as a background noise with respect to the contact structure.
That is, they are secondary actors that we want to filter out because they do not really take part in
the object that we want to capture.

We point out that the purpose of our filtering procedure is similar to backbone extraction for the
reduction of static networks’ density and noisiness [34]. In analogy with this process, we also consider
temporal networks as made of a core structure of the most important links, surrounded by a cloud of
less meaningful links — the noise.

3.2.1 Link weights

The time-window aggregation process returns a single interval that covers the whole duration of
the window [t1,t2], for every link that presents at least one contact with timestamp ¢ € [¢1,t2]. Every
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detail on the time ordering inside a same snapshot is lost, but to choose which links to keep and which
to filter out, a link weight is computed while projecting onto the snapshots.

The simplest choice possible is to count the number of contacts (NOC). In this first case, the
distribution of the timestamps is not considered: link A with five consecutive contacts and link B with
five contacts isolated from one another will have the same weight. The filtering procedure is to fix
a threshold value 6 and to only keep the links for which the link weight is greater than 6, which are
expected to be the most important in determining the contact structure. The value of 6 can be fixed
for all the windows or window-dependent: in Chapter 4 we fix a percentage N and compute 6 in order
to filter out the N% of the links with the lowest weight.

The other weights that we consider take the intervals structure into account. Therefore, a list of
intervals is considered for each link on a given window, instead of a list of contacts. In other words, in
this case we consider the temporal network as an interval graph. The idea to perform the windowing
becomes to keep the stabler links, that is those for which contacts are organized into few relatively
long intervals. We thus filter out links with many small intervals, lasting even one single contact (205s),
because they are less likely to represent a real conversation.

The first possibility is to simply count the number of intervals (NOI). In this case, “high-quality”
links passing the filter are those with smaller weight. Another possibility to directly penalize links with
short intervals is to combine the NOC with the NOI with the ratio:

NOC

NOL (3.6)

which is equivalent to the average intervals’ duration. In this way, a link A with a single interval
lasting for half of the window duration and a link B with a single contact over the whole window have
different weights. As for the simple NOC, important links for temporal network structure are those
with a high value.

All the link weights proposed until now present a decreasing exponential distribution across the
links population. That is, most of the links have small weight and very few links have a much greater
weight (see Section 6.1.1). Instead, another measure that we tried as link weight does not have this
same distribution: it is broadly distributed in the range [0, 1] (Figure 6.1). This last measure is taken
in the following way: for every window and for every link we count how many times a contact is
anticipated by another contact in the previous timestep. Then, we normalize this value link-wise by

the NOC. This reduced to calculating:
NOI

3.2.2 Filtering windows

In the previous section it is taken for granted that the windows on which the filtering is performed
directly superpose with the aggregating windows. But in general, we can also take two different window
sizes: we thus distinguish between a filtering windows’ size wy and an aggregating windows’ size w.
The idea to consider this general case came to our mind while filtering snapshots with small window
size w, i.e., only few times the resolution timestep dt. In that case, only a few number of values for
the weight are possible (possible values for the NOC are between 1 and w/dt). Hence, filtering can
become rather meaningless and stochastic.

A valuable configuration to perform the filtering is with overlapping windows both for aggregation
and filtering, eventually with different window sizes. To give an example, one of the configuration
that we discuss in Chapter 4 has the values wy = 1h and wy = 10min. We also tested the general
configuration w, # wy with non-overlapping windows, both in the case wy > w, and w, > wy. Here,
wy/w, (or we/wy if we > wy) has to be an integer, to have a finite number of windows of the smaller
size inside of the window with greater size.

Finally, with overlapping windows we also consider a sort of convolution between two different
weights: the link weights w; as defined in Section 3.2.1 and a time weight depending on the position
of contacts’ timestamps within the window. The computation of the second weight requires a function
f(t), that we call a mask. For every link there is a list ¢1, to, t3, . . . of the timestamps for which it presents
contacts within the window; the global weight of the link will thus be [f(¢t1) + f(t2) + f(t3) +...] - wy.
In this view, we can see the previous filtering methods as the trivial case with f(¢) = 1.

10
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Chapter 4

Results

We tested our framework on different SocioPatterns datasets (Section 6.1.1), but given that the
results are quite similar, we decided to present and discuss the results only for one of them. We chose
a dataset of contacts in a high school [35]. Students from 9 classes were recorded during 5 days in
December 2013. Hence, it had a global duration that was not too short — poor statistics — nor too
long — heavy computations.

The datasets that we considered all belong to a particular category of temporal network, sometimes
reported as proximity networks. As most of the measured temporal networks in human dynamics,
our high-school dataset presents the characteristics of burstiness of the time structure and scale-free
distributed quantities. We briefly recall these concepts in the Annex (Section 6.1.1). It is important
to remember these two properties while looking at the results presented in this chapter, because even
if the framework that we define could be useful for many other types of temporal networks, the results
that we present here clearly depend on the specific dataset category that we chose.

The resolution of the dataset is dt = 20s; it does not correspond to the sampling frequency, but
it comes from a time-window aggregation at the source (as explained in Section 6.1.1). So, we can
consider single rows on the data table either as instantaneous contacts happening at the timestamp
t or as intervals on the form [t — dt,t], depending on whether we are using the contact sequence
representation or the interval graph representation, respectively. We used the first when working with
non-overlapping windows and the second with overlapping windows, mainly for computational ease
(we leveraged the tnetwork library to work with intervals).

4.1 Non-overlapping windows

We begin with the following configuration: non-overlapping windows for both filtering and aggre-
gation. We tested different combinations of the window sizes wy and w,, respectively, and the most
interesting results are discussed below. We start with the simplest case for link weights, which is the
number of contacts (NOC). Before showing the results of our filtering procedures, we define a stochastic
baseline to compare with. After, we show the behavior of FPs and FNs with respect to window sizes
and threshold values. At the end, we discuss the effect of the choice of the link weights (Section 3.2.1).
Quantitative comparisons are done in terms of the two scores of stability and fidelity (Section 3.1).

When not specified, the values of the window sizes for the case w; = w, are the following:

W € [1min, 2min, 5min, 10min, 20 min, 30 min, 1h, 2h, 24h] (4.1)

We usually skipped sizes smaller than w = 1 min (namely 20s and 40s), because link weights become
meaningless if the aggregation window is only few times larger than the resolution time scale dt. For
the case wy > w, instead, we display the results for wy = 1h combined with smaller values for w,,
again taken from the values above (Equation 4.1).

4.1.1 Filtering baseline

In this section, we consider a stochastic filtering of the contacts: for every snapshot, a portion of the
links with at least one contact is selected, and each of their corresponding contacts within the snapshot

11
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is removed. As a parameter, we fix the percentage value for the number of links to be removed among
all the links in the snapshot.

We begin with the case wy = w, = w (Figure 4.1) and take for w all the values in Equation 4.1,
plus the timestep dt = 20s. A heat map of stability, computed with the unweighted Jaccard coefficient
(Equation 3.1), is displayed in Figure 4.1. We notice a drop of the score while increasing the number
of links removed (vertically, from top to bottom). This behavior is observed for all values of w, i.e.,
for every column. Hence, filtering stochastically we break the network structure and make consecutive
snapshots less similar to each other.
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90%
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any

- 2000

13=+02 2 452402 - 1750

-10%

- 1500

7e+02
et _ 1250

-25%

lle+03

filtering thresheld in percentage
50%

67%

22e+02

90%

20s 1 min 2 min 5 min 10 min 20 min 30 min 1h 2h 24 h
windaw size

Figure 4.1: Stochastic filtering baseline for the case w; = w,. Above: heat map with stability score (inside
boxes) against window size (horizontal axis) and filtering threshold in percentage (vertical axis, —N% means
that N% of the links are removed). Below: heat map with the average number of links (not the NOC, which is
higher) within each snapshot. Values can correspond not exactly to the percentages on the left because weights
have integer values; therefore, all the links with weights equal to the threshold value have to be either included
or excluded from the links to remove. In both cases there is a detachment from the actual percentage value.

Looking at the first row — without filtering — we see that the highest stability is at the smallest
size, and the lowest is at the intermediate sizes. The behavior is thus non trivial, with a non-monotonic
dependence with respect to the window size. The fact of having a very high stability at the resolution
size dt depends on how the single contacts were defined, starting from the measurement: as explained
in the Annex (Section 6.1.1) they are sort of already aggregated. This does not mean that it is only
a matter of convention, but that data comes already aggregated at the smallest scale possible that is
meaningful for the dynamics that is recorded. Relatively high scores are also found by aggregating
over full days: this reflects the quite general circadian structure of human (and other living systems)
dynamics [23].

A crucial aspect to notice is that absolute values are relatively low. Even at the resolution size
the average Jaccard similarity is lower than 50% which means that more than half of the contacts

12
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change from one snapshot to the other, in average. We are thus quite far from the idea of a motion
picture with smooth transitions between frames. The situation gets even worse if we consider that at
the smallest time scales the snapshots are “ugly” from a network science viewpoint (few nodes, too
sparse), while at higher time scales, where networks are better structured, the score drops to 25-33%.

This is a key point for the orientation of our study. The idea to perform a filtering of the contacts
came exactly from this finding. We were quite shocked to realize how far aggregated networks are from
the ideal situation where single snapshots are well defined networks that also evolve smoothly in time.
For the same reason we began to consider also overlapping windows, instead of only non-overlapping
ones: to increase similarity between adjacent windows.

We now display the same type of heat map for the case wy # w, (Figure 4.2). The stochastic
filtering is done at w; = 1h: the links selected by chance are removed in every aggregation window —
with smaller size w, — that fits inside of the corresponding filtering window.
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Figure 4.2: Stochastic filtering baseline for the case wy = 1h, w, < wy. Please refer to Figure 4.1 for details
about the two heat maps.

Surprisingly, the qualitative behavior is rather different with respect to the previous case. The
similarity score still decreases vertically for most of the window sizes, but far less. For the two smallest
sizes and in the last row in particular, the score even increases slightly.

We believe that this difference between the two apparently not-so-different approaches lies in the
particular distribution of contacts in face-to-face interaction networks (Section 6.1.1): very few links
account for most of the contacts (the distribution of link weights is scale-free). Now, passing from
wg to the surrounding wy, new links that are added are more likely to have a lower NOC, since they
were not there before; thus, the number of links with higher NOC decreases, in percentage, and their
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probability to not be drawn by chance increases. This hypothesis supports our idea that links making
network structure are mainly those with higher link weight.

4.1.2 Filtering with number of contacts

As in the previous section, we fix a percentage of the links to be removed and let the absolute value
of the threshold to vary accordingly, snapshot by snapshot. In this case, the choice is not stochastic,
but according to the link weight: only the more frequent links within the time window are kept. The
implementation is done following these steps:

1. Compute the weight of each link within the window
2. Sort the weights’ list in ascending order

3. Save the threshold value 6 corresponding to the position p = [N% - £], where N% is the filtering
threshold and /£ is the length of the weights’ list

4. Remove all links for which the link weight is strictly less than 6

We detail the procedure to clarify the behavior of the average number of links within each snapshot,
displayed by the second heat map in each figure. The key point is that having a strict “<” sign, there
are actually more than (100—N)% of the values that pass the filter: all those with link weight greater
or equal to the threshold value. A consequence of this choice is that, for instance, the stability is
equal for all percentage thresholds in the range 0-25%, in the case wy = 1h,w = 1 min. This happens
because the threshold value remains # = 1, which means no filtering at all (every link has at least a
weight of 1 to be in the snapshot). Results for the case wy = w, and wy = 1h are in Figures 6.2 (in
the Annex) and 4.3, respectively. We compare them to their respective baselines (Figures 4.1 and 4.2).

For the case wy = wq, the stability remains constant within a same column, instead of dropping
from top to bottom (baseline heat map). This qualitative behavior is conserved at all window sizes. A
rather different result is found in Figure 4.3, where the stability score increases monotonically from top
to bottom. High absolute values are reached in the last row, especially for the columns at the middle,
and comparing with the first row we notice that the score is more than doubled at w > 5 min. Values
around 70% are reached when the first decile of the most frequent links is kept; a stability around
80% is reached at —95% (we recall that the number of links passing the filter is actually much bigger
than 5%, around 80%). This is quite interesting for many reasons. First, even if values get doubled,
stability can still be considered just fine: for a smooth transition between subsequent snapshots, we
would prefer values around 80-90%. Second, a rather heavy filtering is necessary to reach high values:
how much the obtained network remains faithful to the original where only 10% (or even less) of the
links are kept? In the next section we show what fidelity score can tell us on this issue.

4.1.3 Fidelity: FPs vs FNs

We now display results for the second of the two evaluation properties defined in Section 3.1: fidelity
to the original temporal network. The total distance between the filtered-aggregated network A and
the original network O is computed through Equation 3.4; here, we want to distinguish between false
positives (FPs, contacts in A but not in O) and false negatives (FNs, contacts in O but not in A).

Before showing our results, we discuss qualitatively what is expected. At fixed window size, the
number of contacts that are cut out grows with the threshold value. So, FNs increase with the filtering
threshold and FPs decrease. At fixed threshold, large windows have more space to be filled by FPs,
so the number of FPs increases with w. Instead, the number of FNs is constant in the case with fixed
wy = 1h, since the same links are removed at every window size (filtering window is in common among
all the window sizes w,); the behavior is not easily predictable in the case w; = w,. In both cases, we
cannot know in advance what is the ratio between FPs and FNs, because this aspect depends on both
the dataset and the filtering technique.

For the configuration wy = 1h, w, < wy, we display some graphs at fixed threshold in Figure 4.4,
some at fixed window size w, in Figure 4.5. A complete 3D plot is available online. The analogues
for the case wy = w,, with akin qualitative behavior, are available in the Annex (Figures 6.3 and
6.4). Firstly, we notice that the qualitative behavior is as expected, with a flat curve for FNs and a
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Figure 4.3: Filtering with the absolute number of contacts (NOC) for the case wy = 1h, w, < wy. Above:
heat map with stability score (inside boxes) against window size (horizontal axis) and filtering threshold in
percentage (vertical axis, —N% means that N% of the links are removed). Below: heat map with the average
number of links (not the NOC, which is higher) within each snapshot. Values do not correspond exactly to
what percentages on the left would give, as explained in the second paragraph of Section 4.1.2.

monotonic increase for FPs. Secondly, we can focus on the proportion between FPs and FNs. The first
prevail until the threshold goes beyond 90%, then the number of FNs exceeds that of FPs, starting from
the smallest values of w,. This means that performing a time-window aggregation without filtering,
as it is usually done in literature, plenty of FPs are introduced; but removing some of the links it
is possible to reduce them to a quarter, at the cost of introducing a relatively small number of FNs.
Comparing to distance curves for the stochastic baseline (Figure 6.5 in the Annex) we can see that
the shape of the curves is almost conserved, but absolute values become a little smaller in the case of
targeted filtering.

Moving to Figure 4.5, we observe that it also follows the expected qualitative behavior. The most
interesting feature of the curves is perhaps that at high threshold the cumulative distance between
original and aggregated network presents a minimum, or a plateau. This behavior comes from the
opposite monotonicity of FPs and FNs. The qualitative behavior of the stochastic baseline (Figure
6.6 in the Annex and 3D plot online) is much different in this case. The most relevant difference is in
the high filtering: there is no saturation (plateau or maximum) in the baseline, but a steep decrease
towards zero.

We can interpret the region where distance is minimized — or it tends to a plateau — as suggesting
a range of threshold values for which fidelity is optimized. The best aggregation would occur by filtering
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Figure 4.4: FPs, FNs and distance (Equation 3.4) between original network and filtered time-window aggre-
gated network, in the configuration wy = 1h, w, < wy. The fixed threshold value in percentage is indicated
above each plot; note that percentage values do not correspond exactly to the actual number of links passing
the filter, as explained in Section 4.1.2. The varying window size is on the horizontal axis.

out around 90% of the links in the network. It seems quite absurd to say that such a reduced subset
is more representative of the original temporal network than by keeping all the links, because it would
mean that most of the links do not really take part in making network structure (we remind that having
a scale-free distribution for the NOC across the links population, all the links removed at -90% account
for only 20% of the total number of contacts; that is why we consider that our filtering technique is
appropriate).

There are mainly two possible interpretations: one is that for datasets of face-to-face interaction as
the ones we worked with, the system behavior can truly be well characterized by only looking at the
most active users, neglecting most of the others. In this case, temporal networks could be simplified in
a rather straightforward manner. The second possibility is to think that rarer contacts are also crucial
to characterize the network, therefore our fidelity score would not be a good measure of reliability in
the time-window aggregated graph.

4.1.4 Filtering with other link weights

In this section we mention the results that we got using other choices for link weights, discussed in
Section 3.2.1. We performed the same tests that are shown in the rest of this chapter, but replacing
the simpler NOC with link weights defined by Equation 3.6 and Equation 3.7. Despite the two weights
represent two different quantities, the resulting filtering is exactly the same, since moving from f(z) = z
(Equation 3.6) to f(z) = 1 — 1 (Equation 3.7) does not change the ordering of link weight values.
Therefore, we comment the obtained stability and fidelity for both at the same time.

Concerning stability (Figure 6.7 in the Annex), absolute values are quite similar with respect to
the case with the NOC: they go from less than 50% for the unfiltered case to around 80% at high
filtering (90-95%). But the position of the optimal region on the parameter grid is different: in the
configuration wy = 1h, w, < w; stability peaks at the lowest scale of 1min.

The interpretation is twofold: on the one side, it proves that different choices for the weight affect
the stability score; on the other side, the dependence on the threshold value is conserved, qualitatively.
Therefore, different weights end up discouraging the same region of the heatmap as less adapted for
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Figure 4.5: FPs, FNs and distance (Equation 3.4) between original network and filtered time-window aggre-
gated network, in the configuration wy = 1h, w, < wy. The fixed window size is indicated above each plot; the
varying threshold value in percentage is on the horizontal axis. Note that percentage values do not correspond
exactly to the actual number of links passing the filter, as explained in Section 4.1.2.

time-window aggregation. This also means that, outcomes being akin, we can choose to use the weight
that is more computationally efficient, namely the simple NOC.

The situation is rather similar for fidelity score. With weight as in Equations 3.6 and 3.7 the curves
of FPs, FNs and distance are similar to the ones with the NOC (Figures 4.4 and 4.5).

4.2 Overlapping windows

In this section we display the results that we got with overlapping windows, shifted by a distance
of a single time step dt = 20s from one another (Figure 2.3, b). We only show results for the
case wy = lh, w, < wy, to compare with the non-overlapped window aggregation. We remark
that the situation is different however: here the aggregation window is always at the center of the
filtering window, while in the non-overlapped case the smaller aggregation windows spanned all over
the corresponding filtering window. As a consequence, the situation is actually in the middle between
the configuration w; = w, and wy > w, of the non-overlapping window aggregation. Technical details
on the computation of the fidelity score are available in the Annex (Section 6.1.2).

4.2.1 Stability and fidelity

Having windows that partially overlap, similarity between nearby snapshots becomes necessarily
higher than with non-overlapping windows (Figure 6.8). With wy = 1h and for w, > 5min, stability is
higher than 90% but even at 1 min it is already at 75%. A filtering with the NOC increases stability even
more, as expected, while the stochastic baseline (Figure 6.9) shows a drastic decrease with respect to the
filtering percentage (rather close to the behavior of the case w; = w, in non-overlapping windowing).

Curves of FPs, FNs (computed through Equations 6.1 and 6.2) and their sum (distance) are similar
to the case of non-overlapping windows, both in shape and absolute values. Hence, on this side, there
is no reason to prefer overlapping windows. We believe that this is due to the peculiar structure of our
datasets, recording students in a school. The timetable is much regular during the week, with school
days starting and ending always at the same hours. Hence, non-overlapping windows already work

17



CHAPTER 4. RESULTS ALESSANDRO CHIAPPORI

quite well if they window size is a fraction of the school day and of the whole day of 24 h: it never
happens that, for instance, a window of size 1h is empty for all its period except the last 10 minutes
— situation that would bring a lot of FPs —, as long as the beginning of the series of non-overlapping
windows is in the right position.

We expect overlapping windows to allow a valuable improvement in fidelity for datasets where the
periods of activity are distributed less regularly, so that non-overlapping windows become less effective.

4.2.2 Mask filters

As anticipated in Section 3.2.2, we also considered a convolution between the link weight and a
t—tg)>

time weight. In particular, we used a snapshot-dependent Gaussian mask f(t) = 67% centered at
the center tg of both the filtering and aggregation window: contacts toward the center have an higher
time weight with respect to those at the limits of the window.

The idea is to take advantage of two time-scales at the same time: a larger w; = w,, which ensures
to have a well-defined weights distribution and a smaller standard deviation ¢ of the Gaussian curve.
Promoting links that are closer to the window center allows to “sample” at a higher resolution, possibly
increasing fidelity and by tuning the value of o we can sort of zoom in and out. To give an example,
with the parameters wy = w, = 1h, 0 = 5min and 6 = 3, a link presenting a series of 5 — more than
0 — contacts towards the beginning of the time window will be filtered out, considering that the link
was already included in the filtered-aggregated network when the center of the window was closer to
the series of contacts.

We were not able to prove a quantitative improvement with respect to weighting at f(t) = 1, on
our datasets. This means that either we did not find the correct pair of w; and o, or the approach is
not much valuable for the type of datasets that we considered. For instance, it could simply correspond
to using a smaller window size. Nevertheless, we found interesting to explore this possibility of mixing
weights and wanted to leave our idea as a suggestion for further developments.
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Chapter 5

Conclusions

5.1 Future perspectives

To test how much the region of the parameter grid (of window size and threshold value) indicated
by our scores is actually representative of the entire temporal network, it would be interesting to
use independent evaluation frameworks. A starting point would be to visualize programmatically the
filtered-aggregated networks and to look at time series of standard measures in network science, static
or temporal [36].

Then, papers [28] and [29] (Section 2.4) propose interesting alternative approaches: predictions
from these frameworks and from ours could be compared. As it is done in [28], we could choose some
of the methods for automatic aggregation mentioned throughout Section 2.3 and test the aggregated
networks that they produce, on the basis of our two scores.

This being said, we stress that our goal was more to suggest which window sizes could be less
adapted for time-window aggregation, rather than to indicate the best situation overall. Different needs
could indeed require different window sizes: our proposition is to always verify if the choice ensures
not-too-bad similarity and fidelity, before performing an analysis on the aggregated graph. This point
is crucial to understand the orientation of our study. We are aware that a blind maximization of
stability and fidelity can bring to a too-heavy filtering, so that the snapshots end up having only very
few links. This is a manifest limitation of our framework. A promising solution would be to modify the
scores, or to add a third one, to control the size — or sparsity or other related properties — explicitly,
to avoid an exaggerated “shrinking” of the network through filtering.

Another possible research direction is to define new quantities for temporal networks’ comparison.
Our scores or link weights could be modified to include time dependence of the single contacts more
explicitly. For instance, link weights could decay in time, as the weights defined in [37]. This type
of modifications can be done by tuning the mask f(¢) that we defined. In any case, it is important
to control computational efficiency, so as not to fall in the problem of non-scalability that we wish to
avoid.

For overlapping windows, we only considered the case of a shift s = dt (2.3). It would be interesting
to increase the value of s in order to have a situation in between overlapping at the resolution scale and
non-overlapping windows. This would be interesting for two reasons. Firstly, from a computational
point of view, since a reduction of the number of snapshots with respect to the case s = dt would
speed up the aggregation algorithm. Secondly, we can imagine to adjust the shift s with respect to the
activity of the network, going faster (high value of s) when activity is low — there is not much going on
in the network — and slower (small value of s) when the activity is high — so that it is worthwhile to
augment time resolution of the snapshot. This recalls the objective of automatic windowing methods
that we group in Section 2.3 under the name of dynamic windowing.

As a rather collateral result, we defined by Equation 3.7 a quantity that does not have a scale free
distribution. It could be interesting to look at its distribution across different temporal networks, to
see if it could be used as a meaningful analysis tool.
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5.2 Discussion

The aim of our investigation was to contribute to the ongoing forge of temporal network’s research
field, that is, to the characterization of webs of interactions that evolve in time. In particular, we
worked on one promising possibility to represent these networks, which is through the time-window
aggregation. It consists in grouping data that is close in time under a same “snapshot”, so that the
temporal network becomes a series of frames made by static networks. The reason why we do not
work directly on the temporal network as it is from the measurements — a table of instantaneous
interactions — is that representations as the time-window aggregated graph can be handier for further
analysis and visualization.

The aggregation process is non-trivial, as there are many ways to aggregate and different free
parameters to set. It is thus important to establish quantitative frameworks to compare different time-
window aggregated networks, both between them and with the original temporal network. With this in
mind, we defined two different scores and tested them on datasets of face-to-face interactions between
humans. These two scores are stability — which promotes smooth transition between the snapshots
— and fidelity — which controls the difference between the time-window aggregated network and the
original temporal network.

Moreover, we showed how to perform a targeted filtering of the links, leveraging a link weight
that is computed while aggregating. This process allows to compress networks by removing, snapshot
by snapshot, all the links with weight below — or above — a certain threshold. We compared two
possibilities: (i) to filter on windows that correspond to the aggregating windows or (ii) to take larger
windows for filtering than for aggregation. We found that in the second case the stability increases
monotonically with respect to the filtering threshold value. These observations open up a lot of
questions and also show the limits of our framework.

We found that simple (without filtering) aggregation with non-overlapping windows returns small
values of stability, below 50%; even smaller if the aggregation window increases. But this is precisely
the most common configuration for time-window aggregation that is used in the literature, where the
resulting snapshot network is next used for the analysis of temporal network’s evolution. We state that,
proceeding in this way, authors can end up working with time series that are substantially unstable,
with most of the links changing from one snapshot to the next one.

According to our evaluation framework, it is convenient to aggregate at small window sizes (around
1 min) and to filter out around 90% of the links in the network. We proved quantitatively this outcome
through the computation of our measures of stability and distance. The latter is inversely correlated
with fidelity and it represents rather intuitively the difference between the original and the aggregated
temporal network. It can be striking to see that we suggest to filter out 90% of the links. But since the
links that are maintained are the most important — the remaining 10% of them accounts for about
80% of the entire sequence of contacts — we believe that with datasets of face-to-face interactions as
the ones we worked with, the resulting subset is truly representative of the original temporal network.

To conclude, we remark that it is crucial to test our evaluation framework on many other datasets
too, in order to judge the specificity of our findings. It would be important to use datasets of both
the same type and different type with respect to ours, to test the generality of our results and the
potentiality of the framework we suggest.
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Chapter 6

Annex

6.1 Methods

We coded in Python 3 all the experiments that made us define the content of this report and that
generated the results and pictures that we show. The main libraries that we used are pandas, numpy
and tnetwork, for the computations and matplotlib, seaborn and plotly for the visualization. We found
useful to work with interactive Jupyter notebooks on Google Colaboratory platform.

For networks visualization we used the Gephi software. Since the focus of our investigation was
in temporal networks representation, not on their visualization, we only used this software to get an
insight into the datasets we worked with, but we did not display images generated with Gephi.

This report was written in IXTEX on the Overleaf platform.

6.1.1 Datasets

All the datasets that we worked with are available at http://www.sociopatterns.org/datasets/.
We downloaded and make use of the datasets named: “Hospital ward dynamic contact network” [38],
“High school contact and friendship networks” [35] and “Primary school temporal network data” [39,
40]. They all record person-to-person interactions across closed communities (patients and doctors in
the hospital, students and teachers in the school), for a duration on the order of the day or week.
Each participant wears a detector (a Radio Frequency Identification Device, RFID) that is able to
both receive and send signals. Since radio frequencies are absorbed by our body, transmission and
reception can only happen from the front: this allows to naturally select proximity events that are more
likely linked with having a conversation, which is the type of interactions in which the SocioPatterns
collaboration is interested.

As explained on the SocioPatterns site and in [41], a non-trivial process is necessary to write
down the contact sequence from the single events of detection. Very briefly, they end up using a
sliding (overlapping) window of size 20s, which allows to capture real face-to-face interactions with a
probability of 99%. Hence, a contact with timestamp ¢ stands for a conversation that has happened
during the interval [t — 20s, t].

In the case of the dataset for which we displayed the results in this report, the basic units are
students and teachers from 9 classes of a high-school in Marseilles (FR). The data gathering went on
for 5 days in total, during the month of December 2013. Each row of the data table contains the
following information: the ID labels of the two persons interacting; the timestamp; two additional
labels for the category of the two nodes, as students’ class. The total number of rows, i.e., the total
number of contacts, is 188508. There are 327 different nodes and 5818 distinct links (out of the
327-326/2 = 53301 possible node pairs). The size of snapshot graphs at different window sizes can be
read directly on the corresponding heatmaps.

SocioPatterns datasets fall into the field of human dynamics [42, 43| and social communication
between humans or other living systems. Typical features of this type of temporal networks are: (i)
burstiness in time of the contacts’ structure, (ii) scale-free distributions for static centralities as the
degree or temporal quantities as the waiting time between two consecutive contacts. (i) means that
contacts are not distributed regularly in time, but short periods of high activity — with many contacts
close in time — are spaced out by longer periods of low activity — with few contacts occurring now
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and then. This happens at every scale: for single links, for the activity of a community as a whole or
for the entire population. An important consequence of (ii) is that few nodes and links account for
the majority of all the contacts of the temporal network. To give numbers that are meaningful for the
results that we show, in our high-school dataset the 10% of the most frequent links make about 80%
of the total number of contacts.

6.1.2 Computation of fidelity with overlapping windows

With non-overlapping windows we directly counted the number of false positives (FPs) and false
negatives (FNs), snapshot-by-snapshot. But if the time windows do superpose, this simple procedure
cannot be used. Hence, we proceeded in this way: first we build a filtered-aggregated interval graph,
next we compute all FPs and FNs via a link-wise difference between the series of intervals in the
filtered-aggregated graph and in the original interval graph.

The first part is done by considering a time window of size wy, sliding by s = dt at each iteration.
At each step we update the link weights and keep track of which links are above the filtering threshold.
When a new link joins this set of “accepted” links, we assign to it the timestamp that accounts for the
beginning of the time interval during which it passes the filter: ¢ — w, /2, where t is the center of the
filtering and aggregating windows and —w, /2 is there because we consider convert links passing the
filter into intervals that cover the entire time window. When a link goes beyond the threshold and
leaves the set of “accepted” links, then we recover the timestamp of the beginning of its interval and
complete it with the timestamp of the end of the interval: ¢+ w,/2, for symmetric reasons with respect
to the one above.

For the second part, we first need to convert the original contact sequence into an interval graph.
To do so, we run the same code that is used to build the filtered-aggregated interval graphs, but with
the following parameters: w, = 20s and 6 = 0. Then, for every link, we convert the differences between
the sets of intervals in the aggregated-filtered interval graph A and in the original interval graph O into
the number of FPs and FNs. Formally, naming F the set of all links, I. o and I, 4 the sets of intervals
for link e in O and A, respectively, and using |1 .| for the total duration of the set of intervals I ., we
have:

Loal—|lanI
FPs =" [ Fe.al |d?A 0| (6.1)
eck
Lol—|lanI
FNs =Y Heol ~ | e | (6.2)
eclk

6.2 Supplementary figures

2500

2000

1500

1000

number of occurrences

500

0.0 o2 o4 0.6 0s 10
link weight

Figure 6.1: Distribution of the link weights defined by Equation 3.7 across the entire dataset. Horizontal axis
is for the weight value, vertical axis reports the absolute number of links on the corresponding bin. Links with
weight O are those with only one single contact, i.e., no intervals at all.
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Figure 6.2: Filtering with the absolute number of contacts (NOC) for the case wy = w,. Above: heat map with
stability score (inside boxes) against window size (horizontal axis) and filtering threshold in percentage (vertical
axis, —N% means that N% of the links are removed). Below: heat map with the average number of links (not
the NOC, which is higher) within each snapshot. Values do not correspond exactly to what percentages on the
left would give, as explained in the second paragraph of Section 4.1.2.
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Figure 6.3: FPs, FNs and distance (Equation 3.4) between original network and filtered time-window aggre-
gated network in the configuration wy = w,. The fixed threshold value in percentage is indicated above each
plot; note that percentage values do not correspond exactly to the actual number of links passing the filter, as
explained in Section 4.1.2. The varying window size is on the horizontal axis.
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Figure 6.4: FPs, FNs and distance (Equation 3.4) between original network and filtered time-window aggre-
gated network in the configuration wy = w,. The fixed window size is indicated above each plot; the varying
threshold value in percentage is on the horizontal axis. Note that percentage values do not correspond exactly
to the actual number of links passing the filter, as explained in Section 4.1.2.
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and filtered time-window aggregated network in the configuration w; = 1h, w, < wy. The fixed threshold
value in percentage is indicated above each plot; note that percentage values do not correspond exactly to the
actual number of links passing the filter, as explained in the caption of Figure 4.1. The varying window size is

on the horizontal axis.
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Figure 6.6: Stochastic filtering baseline for FPs, FNs and distance (Equation 3.4) between original network
and filtered time-window aggregated network in the configuration wy = 1h, w, < wy. The fixed window size
is indicated above each plot; the varying threshold value in percentage is on the horizontal axis. Note that
percentage values do not correspond exactly to the actual number of links passing the filter, as explained in the

caption of Figure 4.1
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Figure 6.7: Filtering with the weight defined by Equation 3.6 or Equation 3.7 for the case wy = 1h, w, < wy.
Above: heat map with stability score (inside boxes) against window size (horizontal axis) and filtering threshold
in percentage (vertical axis, —N% means that N% of the links are removed). Below: heat map with the average
number of links (not the NOC, which is higher) within each snapshot. Values do not correspond exactly to
what percentages on the left would give, as explained in the second paragraph of Section 4.1.2
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Figure 6.8: Filtering with the absolute number of contacts (NOC) for the case wy > w, with wy = 1h, with
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and filtering threshold in percentage (vertical axis, —N% means that N% of the links are removed). Below:
heat map with the average number of links (not the NOC, which is higher) within each snapshot. Values do not
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4.1.2.
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Figure 6.9: Stochastic filtering baseline for the case wy > w, with wy = 1h, with overlapping windows.
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