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1 Introduction

Traffic forecasting covers a central role in the context of Intelligent Transportation Systems (ITSs).
Accurate predictions may contribute to increase the efficiency of traffic operation tasks and driver’s
route-planning, as well as to reduce carbon emissions and traffic congestion related problems. In
this regard analytical modeling has been widely used to address driving routing and signals timing
optimization but, with the increasing availability of traffic data and computational power, data-driven
approaches are currently being explored [1].
Time-series traffic data, consisting of flow, occupancy and speed of road segments, derives from pro-
cesses where spatial and temporal correlations, as well as the underlying road network topology, are of
major importance.
Traditional methods, like ARIMA [2] and VAR [3], often rely on restrictive assumptions on the data
and may fail to capture non-stationarity, multimodality and the aforementioned spatio-temporal depen-
dencies. Recently developed deep learning techniques, able to preserve and exploit the road network
structure, are suitable candidates to improve traffic forecasting capabilities and with this study we
investigate their application to speed prediction, analysing floating car data acquired in the Lyon area.
The aim of this project is to analyse such methods critically and discussing whether their application
is meaningful with the respect to the problem they intend to solve. On this line of thought, data pro-
cessing and filtering pipelines are applied in order to focus the study on roads whose speed forecasting
is a challenging task, subjected to heavy congestions and where traditional methods are expected to
fail more often.
A series of baselines have been implemented, from traditional techniques to machine learning ap-
proaches, to offer comparison and introduction to more sophisticated methods, relying on the idea of
Recurrent Neural Networks (RNN). We introduce Graph Neural Networks (GNN), a class of neural
network architectures designed to address tasks where data lies on graphs. In particular, we provide a
detailed study of the Diffusion Convolution Recurrent Neural Network (DCRNN), a recently proposed
method aimed at combining both the concepts of RNNs and GNNs, along with a reimplementation of
its basic architecture and suggestions for further developments.
Finally, we provide the forecasting performance of all the introduced methods, with respect to com-
monly used error metrics.

2 Data exploration

2.1 Data description

Data is provided by BeMobile and it covers traffic speed of Lyon, urban and peripheral areas, of a
year, from October 2017 to September 2018. The total extent of area can be seen in figure 1, inscribed
in a rectangle whose coordinates are shown in table 1.
The original data consisted in floating car data (GPS trajectory measurements) which is generated,
on an average working day, by roughly 20000 vehicles, non-homogeneously distributed, both spatially
and temporally.
The area covered is divided into 317693 road segments, characterized by a unique identifier and different
road attributes, such as length, free flow speed (ffs), position coordinates, road structure information,
functional road class (frc) and netclass. The last two features describe the type of road and its
importance in the overall road network.

Latitude Sud : 45.5154189 Latitude Nord : 45.9954442
Longitude West : 4.5817533 Longitude Est : 5.1722470

Table 1: Lyon area coordinates

1
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Figure 1: Lyon area map

2.1.1 Speed dataset

BeMobile extracted from raw floating car data an estimation of the speed measured on each road and
aggregated in 3-minute time slots. In figure 2 an example of a speed time series, along with its road
features.

Figure 2: Speed data for three consecutive days, on the x axis the time instances, separated by 3
minutes. 0 := 5:00 and 300 := 19:57 for road 12500009456155 – length: 579 m, ffs: 110 km/h, area:
Chaponnay.

It is worth mentioning that the measured speed never surpasses the free flow speed value. This is
valid for every road and every time instance. Most probably during the aggregation process the speed
value is capped in order not to be sensible to occasional speeding drivers rather than an impeccably
lawful behavior by Lyonnais drivers. While this is a deliberate and legitimate choice it may not always
represent the true speed on the road segments.

2
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2.2 Graph Road Network

Road network is naturally represented as a graph G, where each point of interest (most often an
intersection, but it may simply be a point of the road in case of highways or long roads) is a node, and
each road segment is a directed edge, connecting two nodes if and only if there exist a direct connection
between the two.
In the present study, to address the problem of traffic speed forecasting, it is more useful to switch to
a line graph GL representation. Starting from the original graph G the line graph GL is constructed
following these rules:

• Each node of GL represents an edge of G

• Two vertices of GL are adjacent if and only if their corresponding edges in G are incident

This procedure is done so that the road features can be represented as node attributes and the speed
values as node signals, a common representation in the framework of GNN for traffic speed prediction.
The graph G for the Lyon network counts 156466 nodes and 317693 edges. The derived line graph GL
counts 317693 nodes and 746888 edges.
In the following discussion we will use the words “node” and “edge” to refer to the entities of the line
graph GL, as they are the most suitable description of the road network.

2.3 Road selection

Selecting the nodes to analyze is a crucial step and it must be driven having in mind the aim of the
project.
In order to apply and check the performances of GNN like algorithms on the Lyon speed dataset we
should select road segments which present a well-defined connectivity (to be represented as graph) and
that are in a reasonable quantity (for computational reasons), few hundreds at most.
Moreover, the nodes should present interesting behavior, whose prediction is not a trivial task. For
example, if the speed can be forecasted with a sufficiently good accuracy based only on an historical
average then a GNN approach becomes unnecessary. These goals may sometimes conflict with each
other, so compromises are to be made.
Nevertheless, simple selection criteria have been preferred in order to make the road selection pipeline
adaptable to other case scenarios.

2.3.1 Early selection (missing values)

As it happens with most datasets, the speed dataset suffered extensively from missing and noisy data.
Because it was generated starting from the trajectories followed by 20000 cars each day, on average,
some of the road segments, the nodes of GL, did not have a single measurement for entire days. This
made them inadequate for any speed forecasting purpose. Moreover, during nighttime the number of
measurements dropped significantly for every road, since traffic becomes sparser or vanishes. In urban
areas traffic lights or other factors have an impact on the speed measurements, that in some cases
may not be representative of the actual traffic conditions. Time series of these road segments appear
noisy and uninformative therefore a change of framework may be necessary in analyzing them. As
a result of a coarse data exploration process, a restriction on the data was applied, considering only
daytime, from 5.00 AM to 19.57 PM (300 time slots per day). This is in line with the aim of the
project, since congestion phenomena appear in this time interval. Based on a week of data, assumed
to be representative of the entire dataset, we firstly restrict our study to those roads presenting at
least 90% of actual measurements (non-missing values) in the period mentioned before. The number
of nodes satisfying this criterion is 11404 out the initial 317693 (3.6%).

3
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Figure 3: Speed data for three consecutive days (up) and its first difference (down). On the x axis the
time instances, separated by 3 minutes. 0 := 5.00 and 300 := 19.57 for road 12500009271034 – length:
126 m, ffs: 50 km/h, area: Villeurbanne.

2.3.2 Selection based on non-stationarity

A road segment having interesting characteristics must be non-stationary. The time series of its speed
values will not have a constant mean and variance over time1 if there are congestions or seasonal
patterns, as it happens with the speed drop associated to peak hours. However, the goal of this
selection step is mainly to exclude nodes that present highly noisy time series (white noise is a stationary
process by definition). Nodes with very regular time series, e.g. constant speed, will also be considered
stationary but may be kept in further steps to ensure connectivity. A selection based on a stationarity
criterion can be implemented via the KPSS (Kwiatkowski–Phillips–Schmidt–Shin) hypothesis testing
[4]. The KPSS test is based on the following hypothesis:

• H0 (null hypothesis): the time series is originated from stationary processes (possibly presenting
a trend).

• H1 (alternative hypothesis): the time series is originated from non-stationary processes.

Nodes whose time series are most likely non-stationary will reject the null hypothesis. The test was
conducted on the time series associated to the nodes that have passed the early selection, considering
data from working days ranging from October 2017 to February 2018. Whenever data was found to
be missing linear interpolation between neighboring time slots was adopted. 2652 nodes out of 11404
(23.2%) had the null hypothesis rejected, with a p-value less than 0.05. KPSS is known to have a high
rate of type I error so a best practice is to combine it with an ADF (augmented Dickey–Fuller) test.
However, in this context, the aim was not to have a strict selection so the adoption of only KPSS was
considered sufficient.

2.3.3 Selection based on first difference

The first difference of a time series is the series of changes from one period to the next. In our context
it means the change of the measured speed from a 3-minute time slot to the next. In figure 3 an
example of a time series with its corresponding first difference.
Traffic conditions usually are stable on a 3-minute time scale, there might be sudden drops due to peak
hours or accidents or increases but on average the first difference is expected to have low values. By
considering data from working days ranging from October 2017 to February 2018 an average of the

1These are some of the necessary conditions for a time series to be considered stationary. To compute the mean
and the variance of a time series, in the sense of the stationarity definition, we would need to have multiple time series
instances generated from the the same stochastic process. The mean and the variance would then be computed over
those multiple time series, for each of the time slots composing the time series. If the mean and the variance does not
depend on the particular time slot then the time series may be stationary, otherwise it is not. In practice we do not have
multiple time series for the same process (one could consider multiple days as multiple time series but it would not be
as rigorous) so stationarity testing does not follow strictly the definition.

4
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first difference was calculated for the 11404 road segments that passed the early selection. Normalized
data was used, the speed values were divided by ffs (free flow speed) and whenever data is found to be
missing, a value of 1, equivalent to a change of speed of ffs, is imputed.

2.3.4 Hybrid selection

A selection based on the previously described criteria was conducted with the objective to select nodes
holding meaningful and exploitable data. Among the 11404 road segments that passed the early
selection, those who satisfied all the following conditions were kept:

• Have the H0 of KPSS test rejected or the average first difference is less than 10% of the ffs.

• Missing values do not exceed 15% of the data (working days from Oct 2017 to Feb 2018).

• The average first difference is less than 20% of the ffs.

These conditions can be synthetized by saying that the nodes containing valuable information are the
most stable (first difference less than 10% of ffs) or the most non-stationary (H0 of KPSS rejected)
with a softer condition on the first difference (less than 20% of the ffs). The condition on the missing
values aimed at ensuring data richness on a larger time interval (from Oct 17 to Feb 18). 4393 out of
11404 (38.5%) satisfied these conditions and are kept for later analysis. It is worth noting that most
roads of urban areas were excluded after this selection.

2.4 Spotting congested areas

The selected roads should have useful features for a forecasting analysis. It is now important to find
what nodes present the most interesting behavior, i.e. that are more prone to congestion phenomena.
A simple way to do this was to count how many times the measured speed fell under a third of the
usual ffs (heavy congestion). The usual interval, Oct 17 to Feb 18, was adopted and in figure 4 the
selected nodes having highlighted the areas containing the nodes with most congestions, while in figure
5 the map having marked the 100 nodes with the heaviest congestions.

Figure 4: Selected nodes are represented as black dots. The red squares denote the areas where most
congested nodes have been detected, the brighter the more congested.

5
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Figure 5: The blue markers indicate the 100 nodes with the most congestions, they are all contained
inside the red squares of figure 4

As it can be seen, most of the congested nodes are placed in close proximity of intersections and
exchanges of highways or other major roads. The focus now is to build a graph with a well-defined
connectivity that is able to include most of the areas depicted in figure 4.

2.5 Subgraph building

To build a connected (at least weakly) subgraph that includes nodes in the areas shown in figure 4
starting from GL it is necessary to solve mainly two problems:

• Nodes are often spatially dense with some road segment shorter than 20 meters: if all the nodes
contained in a path connecting two interesting areas were to be kept then the resulting subgraph
will count too many nodes (the ideal order is around one or two hundreds)

• GL is weakly connected in its entirety but not restricting to the subset of the road segments after
selection (more than one connected component)

To deal with the first problem an approach of graph simplification could be adopted but most methods
rely on arbitrary decision combining notions of centralities and geometric considerations in the initial
topology. Moreover, they are found to be very dependent on the specific road network, thus an
implementation ad-hoc and not generalizable would have been required. The second problem is linked
to the first one and it needs careful thinking on how to find a connection between the components.
A simple approach, aimed at solving both questions, is to assign to each edge of GL (not a road
segment) a weight based on the free flow travel time (fftt) of the two nodes (road segments) that the
edge connects. For example, given two connected nodes, roadA and roadB, the corresponding edge is
defined by a tuple (roadA, roadB). Its weight is calculated by summing the fftt of roadA and roadB,
with fftt(road) being calculated as length(road)/ffs(road). This quantity is calculated for each of the
746888 edges of GL and it is considered as a weight, with an added penalty if it connects a node not
belonging to the selected ones. Then, shortest paths are calculated between representative nodes of
the areas in figure 4 (one per area) using Dijkstra algorithm and weights as defined before. A subset
of these shortest paths, based on how many non-selected nodes they contain, is chosen to build a

6
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subgraph Gs. For each of these shortest paths, nodes are progressively added if they satisfy one of the
following conditions:

• They are representative nodes

• They belong to intersections with other shortest paths

• They are farther than a threshold distance from the last added node.

If they do not meet at least one of the conditions nodes are skipped, otherwise they are added and
an edge is consequently added between the node and the one added right before it. By setting the
threshold distance to 700m the resulting subgraph, directed and weakly connected, counted 180 nodes
and 189 edges, in line with the desired size and connecting most of the areas of interest. The topology
and representation on map are shown in figure 6.

Figure 6: The subgraph Gs, its topology (left) and representation on map (right).

3 Forecasting

Traffic speed forecasting of a road segment aims at predicting, given information up to a certain point
in time t, the speed measured on the road segment at/up to time t + T with the highest accuracy,
where T is called forecast horizon.
This definition requires further clarifications: given information could have a wide range of meanings,
for example the measured speed on the road segment of interest, the measured speed on its surround-
ings, or other external notions, like road features and time context. Also, accuracy does not have a
unique interpretation, various error metrics exist to give different notions of performance of the fore-
casting algorithm. The forecasting output depends on the choice between the prepositions in bold in
the previous paragraph: time series are discrete in time since they come from an aggregation process
and the forecast horizon may not correspond to a single time-step. In this case, if we forecast at time
t + T the algorithm returns a scalar, corresponding to the speed at time t + T , possibly n time-steps
after t. On the contrary if we forecast up to time t + T the algorithm returns multiple values (a
vector), corresponding to the speed from time t+1 to time t+T . While discussing the implementation
of various data-driven algorithms it is important to cast away any ambiguity on the choice in our
definition of forecasting. In the present study when referring to accuracy, the following metrics are
adopted:

7
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• MAE, mean absolute error:
1

n

n∑
i=1

|yi − ŷi|

. It measures the average absolute deviation of forecasted values ŷi from the true ones yi.

• MSE, mean squared error:
1

n

n∑
i=1

(yi − ŷi)2

. It measures the average squared deviation of forecasted values. Compared to MAE it penalizes
more large errors.

• MAPE, mean absolute percentage error:

1

n

n∑
1

|yi − ŷi|
yi

. It measures the percentage of the average absolute error.

As for the information exploited for the prediction and the output form of the algorithms, they will be
specified when needed. The present study focuses on short-term forecasting with a maximum horizon
of 1 hour, equivalent to 20 3-minute time steps.
To have an estimate of the improvements brought by a particular algorithm it is important to have
the performances of commonly implemented techniques as references, i.e. baselines. In this context,
in line with the literature, we selected data-driven algorithms belonging to a more classical time-
series analysis approach, like ARIMA (AutoRegressive Integrated Moving Average) and VAR (Vector
AutoRegression) models, and others belonging to the machine-learning area, such as FNN (Feedforward
Neural Network) and LSTM (Long-Short Term Memory). Moreover, naive approaches, like naive
forecasting and historical average, are considered, since they are readily available and provide useful
indicators of the hardness of the prediction task.

3.1 Data for experiments

Our study was conducted by considering data from working days of October and November 2017. The
decision was led by a compromise between data availability, the more data we use the more a deep
learning approach is preferable, and computational resources, the more data we use the higher the
computational burden. Moreover, October and November were considered rather homogeneous with
respect to the underlying traffic phenomena. The various algorithms were trained and validated using
data from October and the first half of November while performances were evaluated using data from
the second half of November.

3.2 Naive approaches

Two basic methods to make a prediction are historical average and naive forecasting. Historical average
is calculated by averaging over all training days the speed measured for each time slot. The process
is run independently for each road segment. For example, the speed prediction of 5 AM on road A,
is obtained by averaging the speed values of 5 AM on road A over all the training days. A difference
was not made between different days of the week since it gave overall worse performances (This may
differ by selecting other time intervals for training and test). As a result, we have the prediction that is
independent of the actual traffic conditions but relies only on a hypothetical daily regularity of traffic.
If good performances are achieved with this method, then adopting complex forecasting algorithms
may not be necessary. The naive forecast method predicts the speed at time t + T to be equal to
the current speed, at time t. In other words, we predict the future speed to be equal to the speed we
are currently measuring. As the horizon increases the performances will necessarily worsen, but it is

8
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important to know the trend for all the metrics. In figure 7 the forecasting error metrics for historical
average and naive forecasting, averaged over the 180 nodes of Gs, as a function of the horizon T , in
table 2 numerical values for selected horizons. The errors are calculated considering only the difference
between the real value at time t+T and the corresponding forecast, not the time slots in-between. (A
complete table with all the presented methods is presented in the Results section) When focusing on
particular areas, those trends will vary, and will be presented when needed.

Figure 7: Error metrics for historical average and naive forecasting, averaged over the 180 nodes of
Gs. The historical average does not depend on the horizon and it is calculated by averaging along the
working days in the training set.

15min 30min 45min 60min Hist Avg
Naive MAE 4.01 5.43 6.81 8.06 6.27
Naive MSE 79.83 151.48 224.93 295.93 152.83
Naive MAPE 8.37% 12.11% 15.73% 19.00% 9.70%

Table 2: Naive forecasting and historical average performances

3.3 Traditional statistical approaches

3.3.1 ARIMA

ARIMA (AutoRegressive Integrated Moving Average) is a class of models suitable for the forecasting of
a stationary time series (or that can be made stationary via differencing). An ARIMA model is defined
by 3 integers (p, d, q) where p is the number of autoregressive terms, d is the number of differences
needed for stationarity, and q is the number of lagged forecast errors in the prediction equation. It is
a generalization of an ARMA (AutoRegressive Moving Average) which, on the contrary, is defined by
only p and q.
The forecasting equation for an ARMA(p,q) model is defined as:

ŷt = c+ φ1yt−1 + ...φpyt−p + θ1et−1 + ...+ θqet−q (1)

An ARIMA model has the same equation, with a different meaning for yt: while in ARMA it represents
the speed value at time t, in ARIMA(p,q,d) it represents the value at time t of the d-differenced time
series. The model is fitted accordingly and the actual speed value is retrieved after forecasting. To
implement the ARIMA algorithm the python library statsmodels was used and missing values were
imputed via linear interpolation. For the choice of the parameters (p, d, q) we selected via grid-search

9
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(p:[0,1,2,3] d:[0,1] q:[0,1,2]) the model with the lowest AIC (Akaike information criterion [5]) after
training on the training set. The selected model was then evaluated on the test set by feeding data
up to time t to predict the speed at time t+ T , via successive one time step ahead predictions2. The
procedure was run independently for each of the 180 nodes, for different forecasting horizons.

3.3.2 VAR

VAR (Vector AutoRegression) is a class of models aimed at capturing linear interdependencies among
multiple time series. It is a generalization of AR(p), or ARIMA(p,0,0), where p is the order of the
model.
The forecasting equation for a VAR(p) model is defined as:

Ŷt = C + Φ1Yt−1 + ...+ ΦpYt−p (2)

Differently from ARIMA, the forecasted quantities are vectors Ŷt corresponding to predicted speed for
the 180 nodes of Gs. The Φ terms in the previous formula are matrices of size (180,180) and describe
the linear dependencies among the different road segments. In the simplest model, VAR(1), the speed
value for a road segment at time t is forecasted as a linear combination of the speed values of every
road segment at time t− 1. To implement the VAR algorithm the python library statsmodels was
used and missing values were imputed via linear interpolation. VAR models of different orders were
trained using the training set. The evaluation was conducted on the test set, by feeding data up to
time t to predict the speed at time t+ T , via successive one time step ahead predictions.

3.4 Machine learning approaches

All the methods introduced in this subsection were implemented using the Tensorflow, a popular
machine learning library [6], and the deep learning API Keras.

3.4.1 Machine Learning dataset format

The methods presented hereafter are different classes of neural networks. Deep learning frameworks
require data to be organized in a standard way, therefore, in order to avoid ambiguities, we briefly
describe its structure.
In machine learning, a dataset is a collection of instances, each characterized by an input x and
an output y. A machine learning model is defined and trained to best match the inputs to the
corresponding outputs. In our case the inputs and outputs have a well-defined structure: in general
the input of an instance is a vector of length 20, containing speed values of an hour on a specific road
segment; the output is a scalar representing the speed value on the same road segment, n steps ahead3.
These definitions imply that for different road segments and horizons T we have different datasets,
hence different models, for the same method: a model will be trained to predict 5 steps ahead, another
to predict 10 steps ahead, etc... . This is repeated for every road segment of interest.
The choice was led by the need of removing ambiguities on the forecasting part and provided an easy
solution on how to deal with missing values in a coherent way. Every dataset is built such that, for
each instance, the output y is a measured value. The corresponding input is allowed to have missing
values and they are imputed through linear interpolation. A major downside is the computational
power needed for training numerous models.
A few exceptions can occur in the definition of a data instance, see appendix A for a more in-depth
discussion.

2For example, to predict the speed at horizon 3, I predict the speed at horizon 1 according to equation 1 (adapted
to the ARIMA case), then, to predict the speed at horizon 2, we still employ equation 1 where the predicted value for
the speed at horizon at horizon 1 is inserted as the term yt−1 in the right hand side, instead of the unknown true value.
The same procedure is then repeated for calculating speed at horizon 3, but having the speed at horizon 2 as yt−1 and
the speed at horizon 1 as yt−2. The notion of successive one time step ahead prediction can be easily generalized to a
generic horizon T and it is also shared by the VAR method.

3n = 1 corresponds to 3 minutes ahead, n = 5 to 15 minutes, n = 10 to 30 minutes, etc...
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3.4.2 Feedforward Neural Network

FNN (Feedforward Neural Network) is the simplest deep learning architecture and one of the main
building blocks for more complex models. It consists of a series of fully connected layers, each of which
can be viewed as a function that maps a vector of dimension m to another one of dimension n. Each
dimension is also called "neuron", from an analogy with the biological cell introduced with the early
perceptron model.
Equation 3 shows the mathematical representation of a fully connected layer.

hW,b(x) = φ(W Tx+ b) (3)

with x input vector (x ∈ Rm), W weight matrix (W ∈ R(m,n)), b bias term (b ∈ Rn) and φ a nonlinear
function (such as Rectified Linear Unit (ReLU), sigmoid, tanh, etc...), generating the output vector h
(h ∈ Rn).
In a FNN, the first layer is associated with the input data instances, the last layer with the outputs,
while layers in-between are called hidden layers. In figure 8 a schema of a FNN with one hidden layer.

Figure 8: One layer FNN architecture, bias term is explicitly represented as a neuron of constant value
1. (Image taken from [7])

According to the universal approximation theorem [8] a FNN having just one hidden layer is capable of
representing any function. In practice, since there is not a theoretically grounded criterion, the number
of layers should be regarded as an hyperparameter, to be set according to the particular application4.
The weight matrix W and the bias term b are parameters that are learned during the training of the
model. The training is based on the notions of loss function, an error metric that the model will
try to minimize (in an image classification setting the loss function could be the number of wrongly
classified images) and backpropagation, an algorithm according to which the matrix and bias values are
updated. Backpropagation, also called automatic differentiation, does that by computing the gradient
of the loss function with respect to every learnable parameter of the neural network. A full description
of backpropagation and gradient-descent like algorithms is not in the scope of the present work; also
every major deep learning library does not require a manual implementation of the most common
optimization procedures.
In our traffic speed prediction context, the input data is a vector of dimension 20, i.e. an hour-long
time series, while the output is a scalar (a single neuron layer) corresponding to the speed at the
prediction horizon. The error metric to be optimized is one the metrics listed before, such as MAE,
MSE or MAPE.
Our FNN forecast, was implemented using an architecture having 2 hidden layers of 32 neurons each
and optimizing the mean average error.

4State-of-the-art performances in image classification, object detection and other computer vision tasks are achieved
with deep architectures, involving models more complex than a FNN.
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3.4.3 Recurrent Neural Network

Recurrent Neural Network (RNN) is a class of deep learning models designed to process sequences.
One of their many applications is in the field of Natural Language Processing (NLP) and machine
translation.
They are relevant to our case scenario since traffic data consists in time series and RNNs are one of
the main machine learning approaches used to model time dependencies.
In its simplest form an RNN layer is constituted by a cell that accepts as input the signal x at time
t and the hidden state (that contains relevant information from previous time steps) from t − 1, and
returns an output y and the next hidden state5. Equation 4 describes its mathematical representation.

y(t) = φ(W T [x(t); y(t−1)] + b) (4)

with x(t) input vector at time t (x(t) ∈ Rm), y(t) output vector at time t− 1 (y(t−1) ∈ Rn), W weight
matrix (W ∈ R(m+n,n)), b bias term (b ∈ Rn) and φ a nonlinear function, generating the output vector
y at time t (y(t) ∈ Rn)6. A single data instance is then composed by an input x having dimensions
(sequence length, m) and an output y having dimensions (sequence length, n) or simply n, depending
on the specific context.
Figure 9 provides a graphical description of an RNN layer.

Figure 9: An RNN layer shown in its looped version (left) and unrolled through time (right). (Image
taken from [7])

The same concepts of model training, loss function and backpropagation discussed for FNN still applies
with RNN, whereas the technical implementation can differ.
In our study we have inputs of fixed sequence length (20 time steps) whereas the signal can be of
dimension 1, if we consider just the traffic speed of a node of interest, or greater than 1, if we consider
the traffic speed of the neighboring road segments as well. The model output is conceptually different
from the output described in equation 4. The output of the RNN layer is to be intended as a hidden
state, keeping track of the state of the traffic conditions, whereas the model output is the same as
the one of the FNN architecture. To pass from the output of the RNN, of dimensionality n, to the
model output, a dense layer is added after the RNN layer (dense means fully connected, but without
an activation function).
In our forecast we did not employ the simple RNN structure, but a more sophisticated one, based on
the Long Short Term Memory (LSTM) cell, known to overcome the issues of unstable gradients and
short memory present in the original RNN implementation.

3.4.4 Long Short Term Memory

LSTM is an evolution of standard RNN cell, first introduced in 1997 [9]. It has two hidden states,
namely c and h, allowing to capture both long and short term context respectively, hence the name. It is

5Often the output and the hidden state are the same vectors.
6Generally n >> m
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the one of main models, along with the recently proposed transformers, to address machine translation
tasks. The system of equations of the LSTM cell is described by equation 5.

i(t) = σ(W T
i [x(t);h(t−1)] + bi)

f(t) = σ(W T
f [x(t);h(t−1)] + bf )

o(t) = σ(W T
o [x(t);h(t−1)] + bo)

g(t) = tanh(W T
g [x(t);h(t−1)] + bg)

c(t) = f(t) � c(t−1) + i(t) � g(t)
y(t) = h(t) = o(t) � tanh(c(t)

(5)

where g is the main layer, meaning that if g alone was present, then we would have returned to
the basic rnn cell definition (equation 4). f , i and g, standing for forget, input, output, act as gate
controllers, since their values are in the (0, 1) interval, due to the applied sigmoid function, and they
are employed to compute element-wise multiplication (denoted by the � symbol). Their names suggest
their functionalities, in plain words [7]:

• The forget gate determines which parts of c, the long-term state, should be erased.

• The input gate determines which parts of g should be added to c.

• The output gate determines which parts of c should be sent to h.

The dimensionalities are analogous with the standard cell, with the output being the vector h and as
learnable parameters the weight matrices (Wi,Wf ,Wo,Wg) and the biases (bi,bf ,bo,bg).
Our implementation involved a single layer LSTM (32 units each hidden state vector) with a dense
layer on top, mapping the output of the recurrent layer with the model output and optimizing the
mean average error.

4 Graph approaches

All the methods presented up to now are graph-agnostic, i.e. they do not consider explicitly the
structure of the road network. Novel deep learning methods have been introduced to address those
problems, like our study case, where data lies on graphs by exploiting their underlying topology [10].
Such problems arise in many domains: in chemistry, molecules are made of atoms linked via chemical
bonds, in e-commerce, costumers and products are linked via their consumer relationship.
These methods are generally referred as Graph Neural Networks (GNN) and they are typically imple-
mented to solve problems such as node classification, graph classification or link prediction.

4.1 Graph Neural Networks, general concepts

GNNs are based on the notion of message a passing, meaning that the embedding/signal associated
with a node is obtained by combining the embeddings/signals associated with its neighbors. Given a
graph signal X (X ∈ R(N,P ) with N number of nodes and P signal dimensionality), the message passing
can be implemented by premultiplying X with a (N × N) "support" matrix, containing information
about the network. Examples of support matrices can be7:

• The adjacency matrix A, whose elements Aij are ones if there is an edge from node i to node j,
otherwise they are set to 0.

• The laplacian matrix L = D −A, where D is the diagonal degree matrix.

• Any matrix that contains topological information, relevant to the problem that is intended to
solve.

7Typically support matrices are normalized according to the node degree, in such a way that graphs with a hetero-
geneous degree distribution are processed properly.
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Due to this matrix multiplication, this kind of GNN are often called Graph Convolution Networks
(GCN), to make an analogy with the standard Convolutional Neural Networks (CNN), that dealt with
data represented in Euclidean space (e.g. images). One of the first GCN examples was introduced in
2016, with an application to a citation network case study [11].
We have focused our attention on a particular GNN, namely Diffusion Convolutional Recurrent Neural
Network (DCRNN), that has already shown promising results in traffic speed forecasting settings [12].

4.2 Diffusion Convolutional Recurrent Neural Network

DCRNN is neural network architecture specifically aimed at tackling spatiotemporal forecasting tasks.
It was described and evaluated on a traffic speed prediction problem in the Los Angeles area, USA,
reporting state-of-the-art performances.
As anticipated in section 4.1, to conform to the GNN framework, speed data8 is represented as graph
signals Xt laying on the road network, in our case the directed graph Gs, where its N nodes are road
segments.
In figure 10 a graphical representation of the DCRNN architecture.

Figure 10: Model architecture for the Diffusion Convolutional Recurrent Neural Network [12], designed
for spatiotemporal traffic forecasting. The speed time series are fed into an encoder whose final states
are used to initialize the decoder. Scheduled sampling [13] was adopted to select decoder inputs. See
appendix A.

4.2.1 Weighted adjacency matrix

Road segments differ in length, free flow speed and other features. Therefore, an edge of Gs represent
a different connectivity depending on the nodes it connects and consequently, the standard adjacency
matrix may not constitute the appropriate support matrix for message passing.
To address this problem, following the approach described by [12], we have built a weighted adjacency
matrix W where each element Wij is given by the thresholded gaussian kernel:

Wij = exp(−dist(vi, vj)2

σ2
) if dist(vi, vj) ≤ κ, otherwise 0 (6)

where dist(vi, vj) is the adjusted distance between road segments vi and vj , σ is standard deviation
of adjusted distances and κ is the threshold applied to the gaussian kernel. The adjusted distance is
calculated starting from free flow travel time, retrieved with the same process described in subsection

8In [12] speed data was retrieved via road sensors.
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2.59, and converted into a distance by fixing an arbitrary speed. In our case study we set this speed
to 90 km/h and κ to 0.7.

4.2.2 Diffusion Convolution operation

Spatial dependency is modelled following an analogy with a diffusion process. Given the graph signal
Xt ∈ R(N,P ) (if we consider as signal just the speed time series, then P = 1) and the diffusion
transition matrices D−1O W , D−1I W T (DO: out-degree diagonal matrix, DI : in-degree diagonal matrix,
W : weighted adjacency matrix of Gs) the convolution operation is defined as:

X :,p ? fθ =
K−1∑
k=0

(θk,1(D
−1
O W )k + θk,2(D

−1
I W T )k)X :,p for p ∈ {1, ..., P} (7)

The filtered signal of a node i (1 ≤ i ≤ N) is the result of combinations of the signals of the neighbors
in the graph up to a distance of K steps from the node, weighted by the parameters θ ∈ RK×2.

4.2.3 DCGRU cell

The diffusion convolution operation accounts for the spatial dynamics component of the problem and
its implementation is directly connected with the temporal dynamics part.
The temporal dependency is modelled through a recurrent neural network variant, the gated recurrent
unit (GRU) [14]. To combine spatial and temporal modelling each matrix multiplication operation is
replaced by the the diffusion convolution operation, described in the previous equation. The resulting
modified GRU cell, called DCGRU, can be defined by the following equations:

r(t) = σ(Θr?G[X(t), H(t−1)] + br)

u(t) = σ(Θu?G[X(t), H(t−1)] + bu)

C(t) = tanh(ΘC?G[X(t), (r(t) �H(t−1))] + bc)

H(t) = u(t) �H(t−1) + (1− u(t))� C(t)

(8)

where X(t), H(t) are the input and output (or activation) at time t, r(t), u(t) are the reset gate and
update gate, and C(t) is the candidate output, which contributes to the new output based on the value
of the update gate u(t). An explanation of the roles of the different control gates can be found in the
appendix B, along with a presentation of the standard GRU cell.

4.3 Reusable DCGRU

In order to allow future model developments, the DCGRU cell should be readily usable, independently
from its original context. Starting from the original implementation, we have built the DCGRU cell
using the latest version of Tensorflow in such a way that is compatible with Keras and does not
rely on deprecated libraries.
Our goal is to provide code that allows for quick model upgrading and can be integrated with minimal
effort. An attempt to meet this goal can be found at github.com/mensif/DCGRU_Tensorflow2, along
with usage examples. See appendix C.
We have tested the newly implemented DCGRU layer on the prediction of a graph-based synthetic
signal and compared it with other commonly used deep learning architectures. The DCGRU layer
obtained the best performance, showing potential for employment in similar tasks.

9Without added penalties
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5 Results

We present here the results obtained with the previously discussed methods. This section is divided
into two categories: the first one is related to prediction on the whole subgraph Gs and the second one
is focused on two subareas of interest. Due to computational constrains, deep learning baselines have
been tested only in the second part. Nevertheless, we have obtained the DCRNN forecasts for both
cases, by using its original implementation.

5.1 Subgraph forecasts

In table 3 the results obtained for all the road segments in the subgraph Gs (see figure 6).

T Metric Hist Avg. Naive ARIMA VAR DCRNN
MAE 6.27 4.01 4.36 4.13 3.23

15min MSE 152.83 79.83 85.84 69.33 59.80
MAPE 9.70% 8.37% 9.63% 9.23% 7.39%
MAE 6.27 5.43 5.78 5.05 4.07

30min MSE 152.83 151.48 147.53 131.04 101.82
MAPE 9.70% 12.11% 13.42% 12.07% 10.07%
MAE 6.27 6.81 7.01 5.76 4.74

45min MSE 152.83 224.93 204.57 190.09 137.89
MAPE 9.70% 15.73% 16.64% 14.33% 12.52
MAE 6.27 8.06 8.07 6.40 5.29

60min MSE 152.83 295.93 256.92 232.44 167.13
MAPE 9.70% 19.00% 19.35% 16.32% 14.54

Table 3: Forecasting performances comparison on the whole subgraph Gs

We can see that the DCRNN approach has the overall advantage against traditional graph-agnostic
methods, especially for the MAE metric and for shorter time horizons. While for the metric the
explanation may simply be that it was the error that the neural network was trying to optimize, the
fact that historical average can be more accurate than DCRNN suggests that it may be fundamental
to consider available information other than the previous hour speed data.

5.2 Limited area case studies

We have conducted a more in-depth study on two subareas, where at least one node per area was
interested by heavy congestion phenomena. In total, 4 road segments per subarea were considered in
the analysis, shown in figure 11.
In figures 12 and 13, the speed data for three consecutive days measured on two road segments,
belonging to different subareas.
In tables 4 and 5 the results obtained for subarea 1 and subarea 2, respectively. The difference between
LSTM and LSTM multi is that the second one considers as input at time t a vector containing the
speed at time t of all the 4 road segments in the subarea. By referring to the RNN framework described
in 3.4.3, for LSTM we have x(t) ∈ R, whereas for LSTM multi x(t) ∈ R4.
The same conclusions derived from whole subgraph predictions still apply. Moreover, we can see
that in the first subarea, the graph-agnostic LSTM multi often had the advantage over the DCRNN,
suggesting that there could be improvements related to the message passing aspect of the DCRNN,
strictly related with the weighted adjacency matrix employed in the method.
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Figure 11: The two areas from which a sub sample of nodes of Gs have been selected (shown in green)

Figure 12: Speed data for three consecutive days, on the x axis the time instances, separated by 3
minutes. 0 := 6:15 and 275 := 19:57 for road 12500009382784 – length: 160 m, ffs: 90 km/h, area:
Vaulx-en-Velin.

Figure 13: Speed data for three consecutive days, on the x axis the time instances, separated by 3
minutes. 0 := 6:15 and 275 := 19:57 for road 12500009363953 – length: 36 m, ffs: 90 km/h, area:
Mions.

T Metric Hist Avg. Naive ARIMA VAR FNN LSTM LSTM multi DCRNN
MAE 7.92 4.70 5.06 4.84 4.43 4.54 4.16 4.00

15min MSE 191.74 87.99 96.74 87.40 85.65 86.14 78.81 72.89
MAPE 12.21% 8.68% 9.69% 9.27 9.29% 9.30% 8.56% 7.49%
MAE 7.92 6.11 6.57 5.74 5.33 5.35 4.80 5.26

30min MSE 191.74 157.45 161.41 139.74 127.01 118.39 107.09 135.20
MAPE 12.21% 11.21% 12.68% 12.12 11.66% 11.39% 10.28% 9.83%
MAE 7.92 7.51 8.00 7.34 5.86 6.17 5.30 6.51

45min MSE 191.74 232.52 227.67 177.62 151.88 159.4 129.14 196.58
MAPE 12.21% 13.64% 15.36% 13.64 13.61% 14.83% 11.67% 12.54%
MAE 7.92 8.94 9.38 8.00 6.21 7.33 5.63 7.04

60min MSE 191.74 314.54 295.20 254.85 176.13 257.19 141.64 228.17
MAPE 12.21% 16.18% 17.82% 15.61 15.51% 20.34% 13.26% 14.39%

Table 4: Forecasting performances comparison on subarea 1
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T Metric Hist Avg. Naive ARIMA VAR FNN LSTM LSTM multi DCRNN
MAE 8.25 3.58 4.39 3.98 3.46 3.66 3.35 3.14

15min MSE 245.04 78.54 86.43 80.44 80.29 86.33 79.39 77.69
MAPE 12.99% 8.12% 10.34% 9.82% 8.76% 9.04% 8.30% 7.95%
MAE 8.25 6.04 6.29 5.43 4.71 4.85 4.60 4.19

30min MSE 245.04 160.52 154.48 150.28 142.74 149.88 140.15 142.68
MAPE 12.99% 11.11% 14.82% 13.57% 11.94% 12.25% 11.90% 10.89%
MAE 8.25 6.50 7.93 6.57 5.85 6.37 5.75 5.15

45min MSE 245.04 250.81 212.92 210.96 197.05 221.25 211.00 198.70
MAPE 12.99% 13.87% 18.37% 16.12% 15.43% 16.15% 15.81% 13.70%
MAE 8.25 8.02 9.24 7.38 6.58 7.22 6.70 5.68

60min MSE 245.04 343.90 259.76 252.48 247.55 276.07 267.42 235.12
MAPE 12.99% 16.42% 20.86% 17.45% 18.73% 20.36% 18.38% 15.54%

Table 5: Forecasting performances comparison on subarea 2

6 Related Works

Several deep learning methods have been implemented in a traffic forecasting setting, both on speed
and flow prediction. Early attempts restricted to the forecast of roads of interests, in a way similar to
the baselines described in section 3.4, and shown improvements over traditional techniques [15]. When
dealing with larger scales, Convolutional Neural Networks (CNN) have been employed by converting
the road network in a 2D grid [16] [17], resembling methods applied to computer vision tasks. Recent
trends have found better performances in treating the road network as a graph by explicitly using
adjacency-like matrices in their neural network architectures, hence GCNs [18] [19], to model spatial
dependency. We decided to focus our attention on the DCRNN since it was one of the first attempts
to model both spatial and temporal dependency, by combining RNNs with GCN computations [12]
that led to state-of-the-art results on large partitioned road networks [20] and can be a starting point
for further model developments.

7 Conclusion

To summarise, our work offers a detailed view of the traffic speed prediction problem, involving road
network analysis, time series forecasting and implementation of recently proposed approaches, dealing
with real-world data coming from GPS trajectories of Lyon traffic. The contribution is threefold:

1. The data processing part, from the initial floating car data to the construction of a relevant
subgraph (from the prospective of traffic forecasting), provides a general approach to select
interesting road segments with respect to their associated speed time series. This issue was tackled
by taking into account data availability, non-stationarity and noisiness, with simple criteria that
ensure reproducibility and extensibility to other case scenarios.

2. The applications of different forecasting methods, from traditional approaches to machine learn-
ing based techniques, gave an in-depth characterization of the traffic prediction problem on a
relevant part of the Lyon road network. Such results could serve as baselines for the evaluation
of future state-of-the-art methods, when applied to the same speed dataset.

3. The analysis of a recently proposed neural network architecture, designed to tackle spatiotemporal
forecasting tasks, such as DCRNN, highlighted a way of combining recurrent neural networks and
graph-based approaches. This study led to the reimplementation of the DCRNN fundamental
constituent, i.e. its recurrent cell DCGRU, in the latest version of a common deep learning
framework, drastically lowering the learning curve for model upgrading and reimplementation.
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7.1 Future perspectives

Further efforts can be devolved in refining or modifying the current DCRNN architecture, to overcome
possible limitations that emerged after the comparative results analysis. Such improvements could
allow to incorporate information other than traffic speed or graph-based signals. For example non-graph
related temporal data (in a traffic prediction context this could mean weather, holidays, weekday, etc...),
static graph-related features (e.g. road structure [21]) or the adoption of attention mechanisms [22] in
the diffusion convolution operation.
DCRNN-like models can be employed in online traffic systems, to deal with real-time traffic monitoring
and congestion prediction tasks. Improvements in these areas would be beneficial to traffic operators
in implementing congestion-avoidance systems, route planners and resilience monitoring.
Other work could consist in redefining the traffic speed prediction problem in order to meaningfully
consider those nodes that have been excluded in the filtering step. Most urban road segments belonged
to the filtered-out nodes, hence studies focused on urban areas would benefit from novel frameworks.

7.2 Personal thoughts on the internship

This internship has been a significant experience that allowed me to actively participate in a research
environment and, being part of a collaboration between the LIRIS and LICIT laboratories, it offered
me complementary views on how to approach the same problem. It was no short of challenges, both
technical and theoretical, that in the end led to rewarding outcomes.
Despite the brevity to which the Covid-19 pandemic reduced my in-presence work at the labs, the
project developments continued remotely at a constant pace, thanks to meaningful discussions with
my supervisors, who gave me guidance and freedom to work independently and follow my intuition.
For these reasons, I consider the internship as a truly enriching experience that made me grow, both
academically and personally.
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Appendices

A Sequence to sequence models

At the beginning of the Forecast section we highlighted the difference between predicting at/up to a
certain time horizon, and how different models may fall into first or second definition. The machine
learning models that have been tested on the Lyon speed dataset predicted at, with the exception of
DCRNN that predicted up to. We have already discussed about the reasons that led us to choose the
first approach in section 3.4.1.
Sometimes the second approach is preferable, for example if we need a model that is not bounded
by a fixed time horizon and returns a sequence of predicted future speed values. In the RNN frame-
work, the standard machine learning approach to deal with sequential data, such models fall in the
sequence to sequence (seq2seq) category, as both the inputs and outputs are sequences.
Usually seq2seq models are implemented with an Encoder-Decoder architecture, a two step model.
The first part, the encoder, has a sequence as input and a vector, embedding information about the
input sequence, as output. The second part, the decoder, takes the output vector from the encoder
and returns the output sequence. In figure 14, a schema of an encoder-decoder model, adapted to our
case with fully connected layers above the decoder RNN.

Figure 14: Recurrent Neural Network with an encoder-decoder architecture. Fully connected layers
(FC) on top, to convert from hidden states to model outputs. (Image adapted from [7])

Encoder-decoder models have a great popularity in machine translation tasks whereas their advantage
in a traffic speed or other predictive contexts may not be as evident. Nevertheless, if a single model
for multiple time horizons is desirable, then they provide a viable solution.
Referring to figure 14, it is important to underline what the various inputs and outputs represent,
especially for the decoder part. The notion of x(t) in the encoder is identical to the RNN models
described in section 3.4.3, i.e. the speed value at time t. In the decoder, the sequence inputs x′(t)s
can have different meanings. During testing we have that x′(t) = y′(t−1), i.e. the input at time t is the
predicted output from t−1, with x′(0) set to be equal to the last input of the encoder sequence. During
training it can be the same as testing or instead, the inputs can be the true speed values at time t,
independently from predictions at previous time steps.
The choice of how the decoder training is implemented has important consequences on the model
performance. In general, in a machine learning framework, it is recommended to have data instances
from the validation set10 to come from the same distribution as the test set. With this in mind, training
and testing should be conducted in the same way. In practice, it leads to a poorly trained model. On

10Also the training set, but this constraint becomes softer as its size increases.
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the contrary, if we feed true values as decoder inputs, then the before-mentioned issue arises. This
kind of model training is also called “teacher forcing” and it usually gives subpar performances.
The DCRNN architecture falls into the encoder-decoder class of models and it overcomes the decoder
training problem by implementing scheduled sampling [13]. Scheduled sampling consists in sampling
the true speed values or the corresponding prediction based on a probability that depends on the
training epoch: at the beginning it almost coincides with teacher forcing and as training progresses,
the probability of sampling the true speed value goes to zero.

B Gated Recurrent Unit

In section 4.2.3 we have described the recurrent cell of the DCRNN architecture, the DCGRU cell, as
a modified version of the GRU [14]. In this appendix section we present the standard GRU using a
consistent naming convention.
The system of equations of the GRU cell is described by equation equation 9, whereas a more graphical
description is given by figure 15:

u(t) = σ(uTi [x(t);h(t−1)] + bu)

r(t) = σ(W T
r [x(t);h(t−1)] + br)

c(t) = tanh(W T
g [x(t); r(t) � h(t−1)] + bc)

y(t) = h(t) = u(t) � h(t−1) + (1− u(t))� c(t)

(9)

Figure 15: GRU cell schema. (Image adapted from [7])

The GRU cell can be viewed as a simplification of the LSTM, since in the GRU there is only one state
vector h. The gate controller u, or update gate, determines how much of the previous state h is passed
to successive time steps, whereas the gate r, or reset gate, determines how much of the previous state
h to forget in the computation of the candidate output c.
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C DCGRU, Tensorflow 2 code

In this section, the code for the alternative version of the DCGRU cell, introduced in section 4.3. It
has been written following common Keras guidelines, making it readily resuable.
A github repository has been created containing the presented code and examples on its usage and
testing, available at github.com/mensif/DCGRU_Tensorflow2.

1 """

2 Alternative implementation of the DCGRU recurrent cell in Tensorflow 2

3 References

4 ----------

5 Paper: https://arxiv.org/abs/1707.01926

6 Original implementation: https://github.com/liyaguang/DCRNN

7 """

8

9

10 import tensorflow as tf

11 from tensorflow import keras

12 from tensorflow.python.keras import activations

13

14 from lib.matrix_calc import *
15

16

17 class DCGRUCell(keras.layers.Layer):

18 def __init__(self, units, adj_mx, K_diffusion, num_nodes, filter_type, **kwargs):

19 self.units = units

20 self.state_size = units * num_nodes

21 self.K_diffusion = K_diffusion

22 self.num_nodes = num_nodes

23 self.activation = activations.get('tanh')

24 self.recurrent_activation = activations.get('sigmoid')

25 super(DCGRUCell, self).__init__(**kwargs)

26 self.supports = []

27 supports = []

28 # the formula describing the diffsuion convolution operation in the paper

29 # corresponds to the filter "dual_random_walk"

30 if filter_type == "laplacian":

31 supports.append(calculate_scaled_laplacian(adj_mx, lambda_max=None))

32 elif filter_type == "random_walk":

33 supports.append(calculate_random_walk_matrix(adj_mx).T)

34 elif filter_type == "dual_random_walk":

35 supports.append(calculate_random_walk_matrix(adj_mx).T)

36 supports.append(calculate_random_walk_matrix(adj_mx.T).T)

37 else:

38 supports.append(calculate_scaled_laplacian(adj_mx))

39 for support in supports:

40 self.supports.append(build_sparse_matrix(support))

41 sup0 = support

42 for k in range(2, self.K_diffusion + 1):

43 sup0 = support.dot(sup0) # (original paper version)

44 # sup0 = 2 * support.dot(sup0) - sup0 # (author's repository version)

45 self.supports.append(build_sparse_matrix(sup0))

46
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47 def build(self, input_shape):

48 """

49 Defines kernels and biases of the DCGRU cell.

50 To get the kernel dimension we need to know how many graph convolution

51 operations will be executed per gate, hence the number of support matrices

52 (+1 to account for the input signal itself).

53

54 input_shape: (None, num_nodes, input_dim)

55 """

56 self.num_mx = 1 + len(self.supports)

57 self.input_dim = input_shape[-1]

58 self.rows_kernel = (input_shape[-1] + self.units) * self.num_mx

59

60 self.r_kernel = self.add_weight(shape=(self.rows_kernel, self.units),

61 initializer='glorot_uniform',

62 name='r_kernel')

63 self.r_bias = self.add_weight(shape=(self.units,),

64 initializer='zeros', # originally ones

65 name='r_bias')

66

67 self.u_kernel = self.add_weight(shape=(self.rows_kernel, self.units),

68 initializer='glorot_uniform',

69 name='u_kernel')

70 self.u_bias = self.add_weight(shape=(self.units,),

71 initializer='zeros', # originally ones

72 name='u_bias')

73

74 self.c_kernel = self.add_weight(shape=(self.rows_kernel, self.units),

75 initializer='glorot_uniform',

76 name='c_kernel')

77 self.c_bias = self.add_weight(shape=(self.units,),

78 initializer='zeros',

79 name='c_bias')

80

81 self.built = True

82

83 def call(self, inputs, states):

84 """

85 Modified GRU cell, to account for graph convolution operations.

86

87 inputs: (batch_size, num_nodes, input_dim)

88 states[0]: (batch_size, num_nodes * units)

89 """

90 h_prev = states[0]

91

92 r = self.recurrent_activation(self.diff_conv(inputs, h_prev, 'reset'))

93 u = self.recurrent_activation(self.diff_conv(inputs, h_prev, 'update'))

94 c = self.activation(self.diff_conv(inputs, r * h_prev, 'candidate'))

95

96 h = u * h_prev + (1 - u) * c

97

98 return h, [h]

99

100
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101 def diff_conv(self, inputs, state, gate):

102 """

103 Graph convolution operation, based on the chosen support matrices

104

105 inputs: (batch_size, num_nodes, input_dim)

106 state: (batch_size, num_nodes * units)

107 gate: "reset", "update", "candidate"

108 """

109 assert inputs.get_shape()[1] == self.num_nodes

110 assert inputs.get_shape()[2] == self.input_dim

111 state = tf.reshape(state, (-1, self.num_nodes, self.units))

112 # (batch_size, num_nodes, units)

113

114 # concatenate inputs and state

115 inputs_and_state = tf.concat([inputs, state], axis=2)

116 input_size = inputs_and_state.get_shape()[2]

117 # (input_dim + units)

118

119 x = inputs_and_state

120 x0 = tf.transpose(x, perm=[1, 2, 0])

121 # (num_nodes, input_dim + units, batch_size)

122

123 x0 = tf.reshape(x0, shape=[self.num_nodes, -1])

124 x = tf.expand_dims(x0, axis=0)

125

126 for support in self.supports:

127 # premultiply the concatened inputs and state with support matrices

128 x_support = tf.sparse.sparse_dense_matmul(support, x0)

129 x_support = tf.expand_dims(x_support, 0)

130 # concatenate convolved signal

131 x = tf.concat([x, x_support], axis=0)

132

133 x = tf.reshape(x, shape=[self.num_mx, self.num_nodes, input_size, -1])

134 x = tf.transpose(x, perm=[3, 1, 2, 0])

135 # (batch_size, num_nodes, input_dim + units, order)

136

137 x = tf.reshape(x, shape=[-1, input_size * self.num_mx])

138

139 if gate == 'reset':

140 x = tf.matmul(x, self.r_kernel)

141 x = tf.nn.bias_add(x, self.r_bias)

142 elif gate == 'update':

143 x = tf.matmul(x, self.u_kernel)

144 x = tf.nn.bias_add(x, self.u_bias)

145 elif gate == 'candidate':

146 x = tf.matmul(x, self.c_kernel)

147 x = tf.nn.bias_add(x, self.c_bias)

148 else:

149 print('Error: Unknown gate')

150

151 return tf.reshape(x, [-1, self.num_nodes * self.units])

152 # (batch_size, num_nodes * units)
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