Day | Time | Room | Group | Topic | Resources |
---|---|---|---|---|---|
Tuesday Nov.16 | 8h00-10h00 | B | All | Introduction, Describing Networks | Cheatsheet intro Cheatsheet mat. slides Recording |
Thursday Nov. 18 | 10h15-12h15 | C | All | Centralities, Gephi, networkx intro | Cheatsheet XP Gephi XP networkx slides Recording |
Tuesday Nov. 23 | 08h00-10h00 | B | All | Teacher: Christophe Crespelle. Phase transition in ER random graphs | Recording slides |
Thursday Nov. 25 | 8h00-10h00 | E001 linux | CompSys | (practicals)Data to Network: Scientometric Networks | Pandas Python datastructures Practical |
Thursday Nov. 25 | 10h15-12h15 | C | All | Random Graph Models II | Cheatsheet random Cheatsheet SF Experiments Recording slides |
Tuesday Nov. 30 | 08h00-10h00 | B | All | Teacher: Christophe Crespelle. Community detection algorithms. | Recording slides |
Thursday Dec. 2 | 8h00-10h00 | E001 linux | CompSys | (practicals)Data to Network: Movies PDF | |
Thursday Dec. 2 | 10:15-12:15 | C | All | Communities 2, Community Evaluation. | Experiments slides Cheatsheet Recording |
Tuesday Dec. 7 | 08h00-10h00 | B | All | Visualization - Assortativity | Experiments Cheatsheet slides Recording |
Thursday Dec. 9 | 8h00-10h00 | D2 à Descartes | CompSys | (practicals)Data to Network: Project | |
Thursday Dec. 9 | 10h15-12h15 | C | All | Dynamic Networks | Experiments Cheatsheet slides Record. (2021, incomplete) Record. (2020) |
Tuesday Dec. 14 | 8h00-10h00 | B | All | Spatial Networks | Experiments Cheatsheet slides Recording |
Thursday Dec. 16 | 8h00-10h00 | E001 linux | CompSys | (practicals)Data to Network: Project | |
Thursday Dec. 16 | 10h15-12h15 | C | All | Spreading Processes | Experiments Cheatsheet slides Recording |
Tuesday Jan. 4 | 8h00-10h00 | B | All | ML on graphs (ONLINE) + article presentation (1) | Experiments Cheatsheet slides Recording(2020) |
Thursday Jan. 6 | 10h15-12h15 | C | All | Article presentation (2) | |
Tuesday Jan. 11 | 8h00-10h00 | B | CompSci | Teacher: Christophe Crespelle. Complex networks as almost structured graphs | Recording |
Thursday Jan. 13 | 10h15-12h15 | B1 | CompSci | Graph Embedding | Experiments Cheatsheet slides |
Tuesday Jan. 18 | 8h00-10h00 | B | CompSci | Graph Convolutional Networks - Project | Cheatsheet ex: Link Prediction ex: Node Classification |
Thursday Jan. 20 | 10h15-12h15 | B1 | CompSci | Article presentation (3) |
openflights
dataset:
from io import BytesIO
from zipfile import ZipFile
from urllib.request import urlopen
address="https://networks.skewed.de/net/openflights/files/openflights.csv.zip"
resp=urlopen(address)
zipfile = ZipFile(BytesIO(resp.read()))
strf=zipfile.read("edges.csv").decode().split("\n")
g= nx.parse_edgelist(strf,delimiter=",",data=False)