| Day | Time | Room | Type | Topic | Resources |
|---|---|---|---|---|---|
| Tuesday 09/15 | 10h15-12h15 | F | Lecture | Introduction, Describing Networks | CheatSheet Intro - CheatSheet Matrix - Video - Slides |
| Thursday 09/17 | 10h15-12h15 | F | Lecture | Centralities | CheatSheet - Slides - Experiments Video |
| Thursday 09/24 | 08h-9h30 | H | TD - Practicals | Python / Gephi / Network structure | Practical 1 |
| Thursday 10/01 | 08h-10h | H | Lecture | Random Graph Models I: ER, Configuration | CheatSheet - Slides - Experiments |
| Thursday 10/08 | 08h-10h | H | Lecture | Random Graph Models II: WS, Scale Free, Barabasi-Albert. | CheatSheet Scale-Free - Slides - ExperimentsVideo |
Tuesday 10/13 |
10:15-12:15 | Lecture | Communities and Community Detection | CheatSheet - Slides - Experiments - Video | |
| Thursday 10/22 | 08h-10h | H | TD - Practicals | Project / Python | TD - project |
| Thursday 11/05 | 10h15-12h15 | ? | Lecture | Visualization - Assortativity | Video1 - Video2 - CheatSheet - Experiments - Slides1 - Slides2 |
| Thursday 11/12 | 10h15-12h15 | F | Lecture | Dynamic Networks | Video - CheatSheet - Experiments - Slides |
| Thursday 11/19 | 10h15-12h15 | F | Lecture | Spreading Processes | Video - CheatSheet - Experiments - Slides |
| Thursday 11/26 | 10h15-12h15 | F | Lecture | Spatial Networks | Video - CheatSheet - Experiments - Slides - Misc. Networks video |
| Thursday 12/03 | 10h15-12h15 | F | Lecture | Machine Learning on graphs (Link Prediction, Node classification, etc.) | Video - CheatSheet - Experiments - Slides |
| Tuesday 12/08 | 10h15-12h15 | F | TD - Practicals | Project / Python | |
| Thursday 12/10 | 10h15-12h15 | F | Lecture | Graph Embedding | Video - CheatSheet - Experiments - Slides |
| Thursday 12/17 | 10h15-12h15 | F | Lecture | Last class: article reading and commenting. | Bonus: CheatSheet GCN |
openflights dataset:
from io import BytesIO
from zipfile import ZipFile
from urllib.request import urlopen
address="https://networks.skewed.de/net/openflights/files/openflights.csv.zip"
resp=urlopen(address)
zipfile = ZipFile(BytesIO(resp.read()))
strf=zipfile.read("edges.csv").decode().split("\n")
g= nx.parse_edgelist(strf,delimiter=",",data=False)